These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

112 related articles for article (PubMed ID: 38041268)

  • 1. Compensation of the tool influence function changes under neighborhood effect in atmospheric pressure plasma processing.
    Ji P; Li D; Jin Y; Su X; Wang B
    Opt Express; 2023 Nov; 31(24):39465-39482. PubMed ID: 38041268
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Investigation of the tool influence function neighborhood effect in atmospheric pressure plasma processing based on an innovative reverse analysis method.
    Ji P; Li D; Su X; Jin Y; Qiao Z; Wang B; Ding F
    Opt Express; 2021 Sep; 29(20):31376-31392. PubMed ID: 34615231
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Freeform surface generation by atmospheric pressure plasma processing using a time-variant influence function.
    Su X; Ji P; Jin Y; Li D; Qiao Z; Ding F; Yue X; Wang B
    Opt Express; 2021 Apr; 29(8):11479-11493. PubMed ID: 33984926
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Nonlinear dwell-time algorithm for freeform surface generation by atmospheric-pressure plasma processing.
    Su X; Yue X
    Opt Express; 2022 May; 30(11):18348-18363. PubMed ID: 36221638
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Optimization technique for rolled edge control process based on the acentric tool influence functions.
    Du H; Song C; Li S; Xu M; Peng X
    Appl Opt; 2017 May; 56(15):4330-4337. PubMed ID: 29047857
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Modified subaperture tool influence functions of a flat-pitch polisher with reverse-calculated material removal rate.
    Dong Z; Cheng H; Tam HY
    Appl Opt; 2014 Apr; 53(11):2455-64. PubMed ID: 24787418
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Modified dwell time optimization model and its applications in subaperture polishing.
    Dong Z; Cheng H; Tam HY
    Appl Opt; 2014 May; 53(15):3213-24. PubMed ID: 24922206
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Modeling of edge effect in subaperture tool influence functions of computer controlled optical surfacing.
    Wan S; Zhang X; He X; Xu M
    Appl Opt; 2016 Dec; 55(36):10223-10228. PubMed ID: 28059243
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Universal dwell time optimization for deterministic optics fabrication.
    Wang T; Huang L; Vescovi M; Kuhne D; Zhu Y; Negi VS; Zhang Z; Wang C; Ke X; Choi H; Pullen WC; Kim D; Kemao Q; Nakhoda K; Bouet N; Idir M
    Opt Express; 2021 Nov; 29(23):38737-38757. PubMed ID: 34808920
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Multi-tool optimization for computer controlled optical surfacing.
    Ke X; Wang T; Zhang Z; Huang L; Wang C; Negi VS; Pullen WC; Choi H; Kim D; Idir M
    Opt Express; 2022 May; 30(10):16957-16972. PubMed ID: 36221529
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Compensating for velocity truncation during subaperture polishing by controllable and time-variant tool influence functions.
    Dong Z; Cheng H; Tam HY
    Appl Opt; 2015 Feb; 54(5):1167-74. PubMed ID: 25968037
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Non-sequential optimization technique for a computer controlled optical surfacing process using multiple tool influence functions.
    Kim DW; Kim SW; Burge JH
    Opt Express; 2009 Nov; 17(24):21850-66. PubMed ID: 19997430
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Edge control in a computer controlled optical surfacing process using a heterocercal tool influence function.
    Hu H; Zhang X; Ford V; Luo X; Qi E; Zeng X; Zhang X
    Opt Express; 2016 Nov; 24(23):26809-26824. PubMed ID: 27857410
    [TBL] [Abstract][Full Text] [Related]  

  • 14. An Elementary Approximation of Dwell Time Algorithm for Ultra-Precision Computer-Controlled Optical Surfacing.
    Wang Y; Zhang Y; Kang R; Ji F
    Micromachines (Basel); 2021 Apr; 12(5):. PubMed ID: 33919287
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Investigation of contact pressure and influence function model for soft wheel polishing.
    Rao Z; Guo B; Zhao Q
    Appl Opt; 2015 Sep; 54(27):8091-9. PubMed ID: 26406510
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Restraint of the mid-spatial frequency error on optical surfaces by multi-jet polishing.
    Zhang Z; Cheung CF; Wang C; Ho LT; Guo J
    Opt Express; 2022 Dec; 30(26):46307-46323. PubMed ID: 36558588
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Zernike mapping of optimum dwell time in deterministic fabrication of freeform optics.
    Zhu W; Beaucamp A
    Opt Express; 2019 Sep; 27(20):28692-28706. PubMed ID: 31684616
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Genetic algorithm-powered non-sequential dwell time optimization for large optics fabrication.
    Kang H; Wang T; Choi H; Kim D
    Opt Express; 2022 May; 30(10):16442-16458. PubMed ID: 36221487
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Time-varying tool influence function model of bonnet polishing for aspheric surfaces.
    Zhong B; Wang C; Chen X; Wang J
    Appl Opt; 2019 Feb; 58(4):1101-1109. PubMed ID: 30874159
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Positive dwell time algorithm with minimum equal extra material removal in deterministic optical surfacing technology.
    Li L; Xue D; Deng W; Wang X; Bai Y; Zhang F; Zhang X
    Appl Opt; 2017 Nov; 56(32):9098-9104. PubMed ID: 29131199
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.