These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
112 related articles for article (PubMed ID: 38041375)
1. Method for increasing the utilization rate of birefringence in liquid crystal lenses. Feng W; Ye M Opt Express; 2023 Nov; 31(24):40845-40855. PubMed ID: 38041375 [TBL] [Abstract][Full Text] [Related]
2. Refractive Fresnel liquid crystal lenses driven by two voltages. Feng W; Ye M Opt Express; 2024 Jan; 32(1):662-676. PubMed ID: 38175090 [TBL] [Abstract][Full Text] [Related]
3. Liquid crystal lens array with positive and negative focal lengths. Feng W; Liu Z; Ye M Opt Express; 2022 Aug; 30(16):28941-28953. PubMed ID: 36299080 [TBL] [Abstract][Full Text] [Related]
6. Optimization of refractive liquid crystal lenses using an efficient multigrid simulation. Milton H; Brimicombe P; Morgan P; Gleeson H; Clamp J Opt Express; 2012 May; 20(10):11159-65. PubMed ID: 22565739 [TBL] [Abstract][Full Text] [Related]
7. Realization of liquid crystal lens of large aperture and low driving voltages using thin layer of weakly conductive material. Ye M; Wang B; Sato S Opt Express; 2008 Mar; 16(6):4302-8. PubMed ID: 18542526 [TBL] [Abstract][Full Text] [Related]
8. A high birefringence liquid crystal for lenses with large aperture. Bennis N; Jankowski T; Strzezysz O; Pakuła A; Zografopoulos DC; Perkowski P; Sánchez-Pena JM; López-Higuera JM; Algorri JF Sci Rep; 2022 Aug; 12(1):14603. PubMed ID: 36028538 [TBL] [Abstract][Full Text] [Related]
9. Liquid crystal lens with a shiftable optical axis. Feng W; Liu Z; Ye M Opt Express; 2023 May; 31(10):15523-15536. PubMed ID: 37157652 [TBL] [Abstract][Full Text] [Related]
10. An electrically tunable-focusing liquid crystal lens with a low voltage and simple electrodes. Lin HC; Lin YH Opt Express; 2012 Jan; 20(3):2045-52. PubMed ID: 22330445 [TBL] [Abstract][Full Text] [Related]
11. Electrically tunable gradient-index lenses via nematic liquid crystals with a method of spatially extended phase distribution. Wang YJ; Hsieh HA; Lin YH Opt Express; 2019 Oct; 27(22):32398-32408. PubMed ID: 31684454 [TBL] [Abstract][Full Text] [Related]
13. A new low-voltage-driven GRIN liquid crystal lens with multiple ring electrodes in unequal widths. Kao YY; Chao PC; Hsueh CW Opt Express; 2010 Aug; 18(18):18506-18. PubMed ID: 20940742 [TBL] [Abstract][Full Text] [Related]
14. High-speed driving of liquid crystal lens with weakly conductive thin films and voltage booster. Shibuya G; Yoshida H; Ozaki M Appl Opt; 2015 Sep; 54(27):8145-51. PubMed ID: 26406517 [TBL] [Abstract][Full Text] [Related]
15. High quality micro liquid crystal phase lenses for full resolution image steering in auto-stereoscopic displays. Li K; Robertson B; Pivnenko M; Deng Y; Chu D; Zhou J; Yao J Opt Express; 2014 Sep; 22(18):21679-89. PubMed ID: 25321544 [TBL] [Abstract][Full Text] [Related]
16. Field-induced refractive index variation in the dark conglomerate phase for polarization-independent switchable liquid crystal lenses. Milton HE; Nagaraj M; Kaur S; Jones JC; Morgan PB; Gleeson HF Appl Opt; 2014 Nov; 53(31):7278-84. PubMed ID: 25402888 [TBL] [Abstract][Full Text] [Related]
17. Polarization independent blue-phase liquid crystal cylindrical lens with a resistive film. Li Y; Liu Y; Li Q; Wu ST Appl Opt; 2012 May; 51(14):2568-72. PubMed ID: 22614475 [TBL] [Abstract][Full Text] [Related]
18. A new dual-frequency liquid crystal lens with ring-and-pie electrodes and a driving scheme to prevent disclination lines and improve recovery time. Kao YY; Chao PC Sensors (Basel); 2011; 11(5):5402-15. PubMed ID: 22163906 [TBL] [Abstract][Full Text] [Related]