These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

126 related articles for article (PubMed ID: 38042009)

  • 1. Pedestrian crash causation analysis and active safety system calibration.
    Ye C; Wang X; Morris A; Ying Z
    Accid Anal Prev; 2024 Feb; 195():107404. PubMed ID: 38042009
    [TBL] [Abstract][Full Text] [Related]  

  • 2. In-depth approach for identifying crash causation patterns and its implications for pedestrian crash prevention.
    Yue L; Abdel-Aty M; Wu Y; Zheng O; Yuan J
    J Safety Res; 2020 Jun; 73():119-132. PubMed ID: 32563384
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effects on crash risk of automatic emergency braking systems for pedestrians and bicyclists.
    Kullgren A; Amin K; Tingvall C
    Traffic Inj Prev; 2023; 24(sup1):S111-S115. PubMed ID: 37267014
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effects of automatic emergency braking systems on pedestrian crash risk.
    Cicchino JB
    Accid Anal Prev; 2022 Jul; 172():106686. PubMed ID: 35580401
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Estimated benefit of automated emergency braking systems for vehicle-pedestrian crashes in the United States.
    Haus SH; Sherony R; Gabler HC
    Traffic Inj Prev; 2019; 20(sup1):S171-S176. PubMed ID: 31381447
    [No Abstract]   [Full Text] [Related]  

  • 6. Differential benefit of sensor system field-of-view and range in pedestrian automated emergency braking systems.
    Haus SH; Sherony R; Gabler HC
    Traffic Inj Prev; 2021; 22(sup1):S111-S115. PubMed ID: 34469208
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Issues and challenges for pedestrian active safety systems based on real world accidents.
    Hamdane H; Serre T; Masson C; Anderson R
    Accid Anal Prev; 2015 Sep; 82():53-60. PubMed ID: 26047007
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Exploring European Heavy Goods Vehicle Crashes Using a Three-Level Analysis of Crash Data.
    Schindler R; Jänsch M; Bálint A; Johannsen H
    Int J Environ Res Public Health; 2022 Jan; 19(2):. PubMed ID: 35055484
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Research of fatal car-to-pedestrian precrash scenarios for the testing of the active safety system in China.
    Tan Z; Che Y; Xiao L; Hu W; Li P; Xu J
    Accid Anal Prev; 2021 Feb; 150():105857. PubMed ID: 33285448
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Evaluation of automated emergency braking system's avoidance of pedestrian crashes at intersections under occluded conditions within a virtual simulator.
    Abdel-Aty M; Cai Q; Wu Y; Zheng O
    Accid Anal Prev; 2022 Oct; 176():106797. PubMed ID: 35964393
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A study of fatal pedestrian crashes at rural low-volume road intersections in southwest China.
    Xie X; Nikitas A; Liu H
    Traffic Inj Prev; 2018 Apr; 19(3):298-304. PubMed ID: 28981367
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Causation analysis of crashes and near crashes using naturalistic driving data.
    Wang X; Liu Q; Guo F; Fang S; Xu X; Chen X
    Accid Anal Prev; 2022 Nov; 177():106821. PubMed ID: 36055150
    [TBL] [Abstract][Full Text] [Related]  

  • 13. How effective are pedestrian crash prevention systems in improving pedestrian safety? Harnessing large-scale experimental data.
    Mahdinia I; Khattak AJ; Mohsena Haque A
    Accid Anal Prev; 2022 Jun; 171():106669. PubMed ID: 35427907
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Pedestrian safety in an automated driving environment: Calibrating and evaluating the responsibility-sensitive safety model.
    Wang X; Ye C; Quddus M; Morris A
    Accid Anal Prev; 2023 Nov; 192():107265. PubMed ID: 37619318
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Assessment of Integrated Pedestrian Protection Systems with Autonomous Emergency Braking (AEB) and Passive Safety Components.
    Edwards M; Nathanson A; Carroll J; Wisch M; Zander O; Lubbe N
    Traffic Inj Prev; 2015; 16 Suppl 1():S2-S11. PubMed ID: 26027971
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Crashes involving distracted pedestrians: Identifying risk factors and their relationships to pedestrian severity levels and distraction modes.
    Hossain MM; Zhou H; Sun X; Hossain A; Das S
    Accid Anal Prev; 2024 Jan; 194():107359. PubMed ID: 37922772
    [TBL] [Abstract][Full Text] [Related]  

  • 17. How do drivers overtake pedestrians? Evidence from field test and naturalistic driving data.
    Rasch A; Panero G; Boda CN; Dozza M
    Accid Anal Prev; 2020 May; 139():105494. PubMed ID: 32203729
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Real life safety benefits of increasing brake deceleration in car-to-pedestrian accidents: Simulation of Vacuum Emergency Braking.
    Jeppsson H; Östling M; Lubbe N
    Accid Anal Prev; 2018 Feb; 111():311-320. PubMed ID: 29257980
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Comprehensive target populations for current active safety systems using national crash databases.
    Kusano KD; Gabler HC
    Traffic Inj Prev; 2014; 15(7):753-61. PubMed ID: 24433115
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Investigating risk factors associated with pedestrian crash occurrence and injury severity in Texas.
    Rahman M; Kockelman KM; Perrine KA
    Traffic Inj Prev; 2022; 23(5):283-289. PubMed ID: 35584352
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.