These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

114 related articles for article (PubMed ID: 38042069)

  • 1. Bioconversion of citrus waste by long-term DMSO-cryopreserved rumen fluid to volatile fatty acids and biogas is feasible: A microbiome perspective.
    Zhao Y; Yu S; Tan J; Wang Y; Li L; Zhao H; Liu M; Jiang L
    J Environ Manage; 2024 Feb; 351():119693. PubMed ID: 38042069
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effects of preservation of rumen inoculum on volatile fatty acids production and the community dynamics during batch fermentation of fruit pomace.
    Njokweni SG; Weimer PJ; Botes M; van Zyl WH
    Bioresour Technol; 2021 Feb; 321():124518. PubMed ID: 33316699
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Characterization of the Dynamic Changes of Ruminal Microbiota Colonizing Citrus Pomace Waste during Rumen Incubation for Volatile Fatty Acid Production.
    Yu S; Li L; Zhao H; Tu Y; Liu M; Jiang L; Zhao Y
    Microbiol Spectr; 2023 Mar; 11(2):e0351722. PubMed ID: 36862010
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effect of ergot alkaloids and a mycotoxin deactivating product on in vitro ruminal fermentation using the Rumen simulation technique (RUSITEC).
    Sarich JM; Stanford K; Schwartzkopf-Genswein KS; Gruninger RJ; McAllister TA; Meale SJ; Blakley BR; Penner GB; Ribeiro GO
    J Anim Sci; 2022 Sep; 100(9):. PubMed ID: 35748808
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Linseed oil and DGAT1 K232A polymorphism: Effects on methane emission, energy and nitrogen metabolism, lactation performance, ruminal fermentation, and rumen microbial composition of Holstein-Friesian cows.
    van Gastelen S; Visker MHPW; Edwards JE; Antunes-Fernandes EC; Hettinga KA; Alferink SJJ; Hendriks WH; Bovenhuis H; Smidt H; Dijkstra J
    J Dairy Sci; 2017 Nov; 100(11):8939-8957. PubMed ID: 28918153
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effects of berry seed residues on ruminal fermentation, methane concentration, milk production, and fatty acid proportions in the rumen and milk of dairy cows.
    Bryszak M; Szumacher-Strabel M; El-Sherbiny M; Stochmal A; Oleszek W; Roj E; Patra AK; Cieslak A
    J Dairy Sci; 2019 Feb; 102(2):1257-1273. PubMed ID: 30580953
    [TBL] [Abstract][Full Text] [Related]  

  • 7. 3-Nitrooxypropanol supplementation of a forage diet decreased enteric methane emissions from beef cattle without affecting feed intake and apparent total-tract digestibility.
    Alemu AW; Gruninger RJ; Zhang XM; O'Hara E; Kindermann M; Beauchemin KA
    J Anim Sci; 2023 Jan; 101():. PubMed ID: 36617172
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Molecular hydrogen generated by elemental magnesium supplementation alters rumen fermentation and microbiota in goats.
    Wang M; Wang R; Zhang X; Ungerfeld EM; Long D; Mao H; Jiao J; Beauchemin KA; Tan Z
    Br J Nutr; 2017 Sep; 118(6):401-410. PubMed ID: 28927478
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Polyunsaturated fatty acids and rumen undegradable protein alter ruminal fermentation and milk fatty acid profiles in dairy cows.
    Phuoc Thanh L; Suksombat W; Loor JJ; Thi Thuy Hang T
    Arch Anim Nutr; 2023 Feb; 77(1):58-76. PubMed ID: 36908195
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Gas and short-chain fatty acid production from feeds commonly fed to red deer (Cervus elaphus L.) and incubated with rumen inoculum from red deer and sheep.
    Lavrenčič A; Veternik D
    J Anim Physiol Anim Nutr (Berl); 2018 Oct; 102(5):1146-1153. PubMed ID: 29978922
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effects of ethyl-3-nitrooxy propionate and 3-nitrooxypropanol on ruminal fermentation, microbial abundance, and methane emissions in sheep.
    Martínez-Fernández G; Abecia L; Arco A; Cantalapiedra-Hijar G; Martín-García AI; Molina-Alcaide E; Kindermann M; Duval S; Yáñez-Ruiz DR
    J Dairy Sci; 2014; 97(6):3790-9. PubMed ID: 24731636
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Dietary supplemental plant oils reduce methanogenesis from anaerobic microbial fermentation in the rumen.
    Vargas JE; Andrés S; López-Ferreras L; Snelling TJ; Yáñez-Ruíz DR; García-Estrada C; López S
    Sci Rep; 2020 Jan; 10(1):1613. PubMed ID: 32005859
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A comparative study of artificial cow and sheep rumen fermentation of corn straw and food waste: Batch and continuous operation.
    Xing BS; Cao S; Han Y; Wang XC; Wen J; Zhang K
    Sci Total Environ; 2020 Nov; 745():140731. PubMed ID: 32717608
    [TBL] [Abstract][Full Text] [Related]  

  • 14. TECHNICAL NOTE: Analysis of volatile fatty acids in rumen fluid by gas chromatography mass spectrometry using a dimethyl carbonate extraction.
    Foote AP
    J Anim Sci; 2022 Aug; 100(8):. PubMed ID: 35660871
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Characteristics of ruminal microbiota and metabolome in Holstein cows differing in milk protein concentrations.
    Wang X; Zeng H; Xu J; Zhai Y; Xia H; Xi Y; Han Z
    J Anim Sci; 2022 Nov; 100(11):. PubMed ID: 35938984
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Between-cow variation in digestion and rumen fermentation variables associated with methane production.
    Cabezas-Garcia EH; Krizsan SJ; Shingfield KJ; Huhtanen P
    J Dairy Sci; 2017 Jun; 100(6):4409-4424. PubMed ID: 28390728
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Reduction of methane and nitrogen emission and improvement of feed efficiency, rumen fermentation, and milk production through strategic supplementation of eucalyptus (Eucalyptus citriodora) leaf meal in the diet of lactating buffalo (Bubalus bubalis).
    Sheoran S; Dey A; Sindhu S
    Environ Sci Pollut Res Int; 2023 Dec; 30(60):125510-125525. PubMed ID: 37999845
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Inoculation with rumen fluid in early life as a strategy to optimize the weaning process in intensive dairy goat systems.
    Belanche A; Palma-Hidalgo JM; Nejjam I; Jiménez E; Martín-García AI; Yáñez-Ruiz DR
    J Dairy Sci; 2020 Jun; 103(6):5047-5060. PubMed ID: 32278566
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Changes in fermentation profile of the reticulorumen and hindgut, and nutrient digestion in dry cows fed concentrate-rich diets supplemented with a phytogenic feed additive.
    Castillo-Lopez E; Rivera-Chacon R; Ricci S; Reisinger N; Zebeli Q
    J Dairy Sci; 2022 Jul; 105(7):5747-5760. PubMed ID: 35599024
    [TBL] [Abstract][Full Text] [Related]  

  • 20. In vitro gas production and rumen fermentation profile of fresh and ensiled genetically modified high-metabolizable energy ryegrass.
    Winichayakul S; Beechey-Gradwell Z; Muetzel S; Molano G; Crowther T; Lewis S; Xue H; Burke J; Bryan G; Roberts NJ
    J Dairy Sci; 2020 Mar; 103(3):2405-2418. PubMed ID: 31954581
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.