BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

270 related articles for article (PubMed ID: 38042262)

  • 1. Enzyme-mediated fabrication of nanocomposite hydrogel microneedles for tunable mechanical strength and controllable transdermal efficiency.
    Chi Y; Zheng Y; Pan X; Huang Y; Kang Y; Zhong W; Xu K
    Acta Biomater; 2024 Jan; 174():127-140. PubMed ID: 38042262
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The effects of molecular weight of hyaluronic acid on transdermal delivery efficiencies of dissolving microneedles.
    Chi Y; Huang Y; Kang Y; Dai G; Liu Z; Xu K; Zhong W
    Eur J Pharm Sci; 2022 Jan; 168():106075. PubMed ID: 34813921
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Development of hyaluronic acid-silica composites via in situ precipitation for improved penetration efficiency in fast-dissolving microneedle systems.
    Tay JH; Lim YH; Zheng M; Zhao Y; Tan WS; Xu C; Ramamurty U; Song J
    Acta Biomater; 2023 Dec; 172():175-187. PubMed ID: 37865280
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Biodegradable Gelatin Methacryloyl Microneedles for Transdermal Drug Delivery.
    Luo Z; Sun W; Fang J; Lee K; Li S; Gu Z; Dokmeci MR; Khademhosseini A
    Adv Healthc Mater; 2019 Feb; 8(3):e1801054. PubMed ID: 30565887
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Poly-γ-glutamic acid microneedles with a supporting structure design as a potential tool for transdermal delivery of insulin.
    Chen MC; Ling MH; Kusuma SJ
    Acta Biomater; 2015 Sep; 24():106-16. PubMed ID: 26102333
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Thermosensitive hydrogel microneedles for controlled transdermal drug delivery.
    Li JY; Feng YH; He YT; Hu LF; Liang L; Zhao ZQ; Chen BZ; Guo XD
    Acta Biomater; 2022 Nov; 153():308-319. PubMed ID: 36055607
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Dissolving Hyaluronic Acid-Based Microneedles to Transdermally Deliver Eugenol Combined with Photothermal Therapy for Acne Vulgaris Treatment.
    Wang Q; Gan Z; Wang X; Li X; Zhao L; Li D; Xu Z; Mu C; Ge L; Li D
    ACS Appl Mater Interfaces; 2024 May; 16(17):21595-21609. PubMed ID: 38635857
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Industrializable approach for preparing hydrogel microneedles and their application in melanoma treatment.
    Xing M; Yang G; Liu H; Zhou Z; Zhang S; Gao Y
    Int J Pharm; 2024 Mar; 653():123883. PubMed ID: 38341048
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Investigation and Optimization of Hydrogel Microneedles for Transdermal Delivery of Caffeine.
    Chandran R; Mohd Tohit ER; Stanslas J; Salim N; Tuan Mahmood TM
    Tissue Eng Part C Methods; 2022 Oct; 28(10):545-556. PubMed ID: 35485888
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Langmuir-Blodgett-Mediated Formation of Antibacterial Microneedles for Long-Term Transdermal Drug Delivery.
    Lu Z; Du S; Li J; Zhang M; Nie H; Zhou X; Li F; Wei X; Wang J; Liu F; He C; Yang G; Gu Z
    Adv Mater; 2023 Sep; 35(38):e2303388. PubMed ID: 37384857
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Rapidly separating microneedles for transdermal drug delivery.
    Zhu DD; Wang QL; Liu XB; Guo XD
    Acta Biomater; 2016 Sep; 41():312-9. PubMed ID: 27265152
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Direct 3D printing of triple-responsive nanocomposite hydrogel microneedles for controllable drug delivery.
    Zhou X; Liu H; Yu Z; Yu H; Meng D; Zhu L; Li H
    J Colloid Interface Sci; 2024 May; 670():1-11. PubMed ID: 38749378
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Assessment of mechanical stability of rapidly separating microneedles for transdermal drug delivery.
    He MC; Chen BZ; Ashfaq M; Guo XD
    Drug Deliv Transl Res; 2018 Oct; 8(5):1034-1042. PubMed ID: 29845379
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Transdermal delivery of celecoxib and α-linolenic acid from microemulsion-incorporated dissolving microneedles for enhanced osteoarthritis therapy.
    Li J; Tian X; Wang K; Jia Y; Ma F
    J Drug Target; 2023 Feb; 31(2):206-216. PubMed ID: 36093744
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Catechol-metal coordination-mediated nanocomposite hydrogels for on-demand drug delivery and efficacious combination therapy.
    Dai G; Sun L; Xu J; Zhao G; Tan Z; Wang C; Sun X; Xu K; Zhong W
    Acta Biomater; 2021 Jul; 129():84-95. PubMed ID: 34010690
    [TBL] [Abstract][Full Text] [Related]  

  • 16. [Rapamycin and HPPH Co-Loaded Nanodrug Delivered via Dissolvable Microneedles to Treat Port-Wine Stains].
    Hao Y; Xu R; Chen M; Chen Y
    Sichuan Da Xue Xue Bao Yi Xue Ban; 2024 Mar; 55(2):433-440. PubMed ID: 38645856
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Biodegradable Microneedles Array with Dual-Release Behavior and Parameter Optimization by Finite Element Analysis.
    Xu S; Liu W; Peng M; Ma D; Liu Z; Tang L; Li X; Chen S
    J Pharm Sci; 2023 Sep; 112(9):2506-2515. PubMed ID: 37072050
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Mechanical strength affecting the penetration in microneedles and PLGA nanoparticle-assisted drug delivery: Importance of preparation and formulation.
    Lu G; Li B; Lin L; Li X; Ban J
    Biomed Pharmacother; 2024 Apr; 173():116339. PubMed ID: 38428314
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Systematic comparisons of dissolving and swelling hyaluronic acid microneedles in transdermal drug delivery.
    Yu M; Lu Z; Shi Y; Du Y; Chen X; Kong M
    Int J Biol Macromol; 2021 Nov; 191():783-791. PubMed ID: 34597691
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Advances in microneedle-based transdermal delivery for drugs and peptides.
    Aich K; Singh T; Dang S
    Drug Deliv Transl Res; 2022 Jul; 12(7):1556-1568. PubMed ID: 34564827
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.