These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

117 related articles for article (PubMed ID: 38042465)

  • 1. Integrated physicochemical processes to tackle high-COD wastewater from pharmaceutical industry.
    Verdini F; Canova E; Solarino R; Calcio Gaudino E; Cravotto G
    Environ Pollut; 2024 Feb; 342():123041. PubMed ID: 38042465
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Combined hydrodynamic cavitation based processes as an efficient treatment option for real industrial effluent.
    Thanekar P; Gogate PR
    Ultrason Sonochem; 2019 May; 53():202-213. PubMed ID: 30686598
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Intensification of industrial wastewater treatment using hydrodynamic cavitation combined with advanced oxidation at operating capacity of 70 L.
    Joshi SM; Gogate PR
    Ultrason Sonochem; 2019 Apr; 52():375-381. PubMed ID: 30563793
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Anaerobic treatment of a chemical synthesis-based pharmaceutical wastewater in a hybrid upflow anaerobic sludge blanket reactor.
    Oktem YA; Ince O; Sallis P; Donnelly T; Ince BK
    Bioresour Technol; 2008 Mar; 99(5):1089-96. PubMed ID: 17449241
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Treatment of real industrial-grade dye solutions and printing ink wastewater using a novel pilot-scale hydrodynamic cavitation reactor.
    Zampeta C; Bertaki K; Triantaphyllidou IE; Frontistis Z; Vayenas DV
    J Environ Manage; 2021 Nov; 297():113301. PubMed ID: 34280856
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Strategies to improve biological oxidation of real wastewater using cavitation based pre-treatment approaches.
    Gogate PR; Thanekar PD; Oke AP
    Ultrason Sonochem; 2020 Jun; 64():105016. PubMed ID: 32078910
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Comparison of acoustic and hydrodynamic cavitation based hybrid AOPs for COD reduction of commercial effluent from CETP.
    Agarkoti C; Gogate PR; Pandit AB
    J Environ Manage; 2021 Mar; 281():111792. PubMed ID: 33383477
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Turning calcium carbonate into a cost-effective wastewater-sorbing material by occluding waste dye.
    Zhao DH; Gao HW
    Environ Sci Pollut Res Int; 2010 Jan; 17(1):97-105. PubMed ID: 19263103
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Upflow anaerobic sludge blanket reactor--a review.
    Bal AS; Dhagat NN
    Indian J Environ Health; 2001 Apr; 43(2):1-82. PubMed ID: 12397675
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Combined ultrasound cavitation and persulfate for the treatment of pharmaceutical wastewater.
    Pandya K; T S AS; Kodgire P; Simon S
    Water Sci Technol; 2022 Nov; 86(9):2157-2174. PubMed ID: 36378172
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Treatment of fish processing industry wastewater using hydrodynamic cavitational reactor with biodegradability improvement.
    Dhanke P; Wagh S; Patil A
    Water Sci Technol; 2019 Dec; 80(12):2310-2319. PubMed ID: 32245922
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Cavitation based treatment of industrial wastewater: A critical review focusing on mechanisms, design aspects, operating conditions and application to real effluents.
    Agarkoti C; Thanekar PD; Gogate PR
    J Environ Manage; 2021 Dec; 300():113786. PubMed ID: 34649311
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Synchronous COD removal and nitrogen recovery from high concentrated pharmaceutical wastewater by an integrated chemo-biocatalytic reactor systems.
    P M; A M; K PM; Sekar K; S S; Srinivasan SV; K SB; G S
    J Environ Manage; 2023 Mar; 329():117048. PubMed ID: 36542888
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Application of hybrid oxidative processes based on cavitation for the treatment of commercial dye industry effluents.
    Gujar SK; Gogate PR
    Ultrason Sonochem; 2021 Jul; 75():105586. PubMed ID: 34004457
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Advanced treatment of biotreated textile industry wastewater with ozone, virgin/ozonated granular activated carbon and their combination.
    Arslan-Alaton I; Seremet O
    J Environ Sci Health A Tox Hazard Subst Environ Eng; 2004; 39(7):1681-94. PubMed ID: 15242118
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Determination of cytotoxicity following oxidative treatment of pharmaceutical residues in wastewater.
    Graumans MHF; van Hove H; Schirris T; Hoeben WFLM; van Dael MFP; Anzion RBM; Russel FGM; Scheepers PTJ
    Chemosphere; 2022 Sep; 303(Pt 2):135022. PubMed ID: 35618071
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Combined chemical and biological oxidation of penicillin formulation effluent.
    Alaton IA; Dogruel S; Baykal E; Gerone G
    J Environ Manage; 2004 Nov; 73(2):155-63. PubMed ID: 15380320
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Treatment of textile dyeing industry effluent using hydrodynamic cavitation in combination with advanced oxidation reagents.
    Rajoriya S; Bargole S; George S; Saharan VK
    J Hazard Mater; 2018 Feb; 344():1109-1115. PubMed ID: 30216970
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Biodegradability assessment of ozonated raw and biotreated pharmaceutical wastewater.
    Arslan-Alaton I; Akmehmet Balcioglu I
    Arch Environ Contam Toxicol; 2002 Nov; 43(4):425-31. PubMed ID: 12399913
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Performance and energetic analysis of hydrodynamic cavitation and potential integration with existing advanced oxidation processes: A case study for real life greywater treatment.
    Mukherjee A; Mullick A; Teja R; Vadthya P; Roy A; Moulik S
    Ultrason Sonochem; 2020 Sep; 66():105116. PubMed ID: 32252011
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.