These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

114 related articles for article (PubMed ID: 38042533)

  • 1. Variable screening methods in spatial infectious disease transmission models.
    Akter T; Deardon R
    Spat Spatiotemporal Epidemiol; 2023 Nov; 47():100622. PubMed ID: 38042533
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The spike-and-slab lasso and scalable algorithm to accommodate multinomial outcomes in variable selection problems.
    Leach JM; Yi N; Aban I; The Alzheimer's Disease Neuroimaging Initiative
    J Appl Stat; 2024; 51(11):2039-2061. PubMed ID: 39157266
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Bayesian nonparametric inference for heterogeneously mixing infectious disease models.
    Seymour RG; Kypraios T; O'Neill PD
    Proc Natl Acad Sci U S A; 2022 Mar; 119(10):e2118425119. PubMed ID: 35238628
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Incorporating spatial structure into inclusion probabilities for Bayesian variable selection in generalized linear models with the spike-and-slab elastic net.
    Leach JM; Aban I; Yi N;
    J Stat Plan Inference; 2022 Mar; 217():141-152. PubMed ID: 36911105
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Bayesian approaches to variable selection: a comparative study from practical perspectives.
    Lu Z; Lou W
    Int J Biostat; 2021 Mar; 18(1):83-108. PubMed ID: 33761580
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Incorporating Contact Network Uncertainty in Individual Level Models of Infectious Disease using Approximate Bayesian Computation.
    Almutiry W; Deardon R
    Int J Biostat; 2019 Dec; 16(1):. PubMed ID: 31812945
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Bayesian variable selection in linear quantile mixed models for longitudinal data with application to macular degeneration.
    Ji Y; Shi H
    PLoS One; 2020; 15(10):e0241197. PubMed ID: 33104698
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Spike-and-slab least absolute shrinkage and selection operator generalized additive models and scalable algorithms for high-dimensional data analysis.
    Guo B; Jaeger BC; Rahman AKMF; Long DL; Yi N
    Stat Med; 2022 Sep; 41(20):3899-3914. PubMed ID: 35665524
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Computationally efficient parameter estimation for spatial individual-level models of infectious disease transmission.
    Ward MA; Deeth LE; Deardon R
    Spat Spatiotemporal Epidemiol; 2022 Jun; 41():100497. PubMed ID: 35691654
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Parameterizing Spatial Models of Infectious Disease Transmission that Incorporate Infection Time Uncertainty Using Sampling-Based Likelihood Approximations.
    Malik R; Deardon R; Kwong GP
    PLoS One; 2016; 11(1):e0146253. PubMed ID: 26731666
    [TBL] [Abstract][Full Text] [Related]  

  • 11. From mixed effects modeling to spike and slab variable selection: A Bayesian regression model for group testing data.
    Joyner CN; McMahan CS; Tebbs JM; Bilder CR
    Biometrics; 2020 Sep; 76(3):913-923. PubMed ID: 31729015
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A hierarchical spike-and-slab model for pan-cancer survival using pan-omic data.
    Samorodnitsky S; Hoadley KA; Lock EF
    BMC Bioinformatics; 2022 Jun; 23(1):235. PubMed ID: 35710340
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Methane prediction equations including genera of rumen bacteria as predictor variables improve prediction accuracy.
    Zhang B; Lin S; Moraes L; Firkins J; Hristov AN; Kebreab E; Janssen PH; Bannink A; Bayat AR; Crompton LA; Dijkstra J; Eugène MA; Kreuzer M; McGee M; Reynolds CK; Schwarm A; Yáñez-Ruiz DR; Yu Z
    Sci Rep; 2023 Dec; 13(1):21305. PubMed ID: 38042941
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The spike-and-slab quantile LASSO for robust variable selection in cancer genomics studies.
    Liu Y; Ren J; Ma S; Wu C
    Stat Med; 2024 Nov; 43(26):4928-4983. PubMed ID: 39260448
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Bayesian latent factor on image regression with nonignorable missing data.
    Wang X; Song X; Zhu H
    Stat Med; 2021 Feb; 40(4):920-932. PubMed ID: 33169396
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Supervised learning and prediction of spatial epidemics.
    Pokharel G; Deardon R
    Spat Spatiotemporal Epidemiol; 2014 Oct; 11():59-77. PubMed ID: 25457597
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Geographically dependent individual-level models for infectious diseases transmission.
    Mahsin MD; Deardon R; Brown P
    Biostatistics; 2022 Jan; 23(1):1-17. PubMed ID: 32118253
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Joint genome-wide prediction in several populations accounting for randomness of genotypes: A hierarchical Bayes approach. II: Multivariate spike and slab priors for marker effects and derivation of approximate Bayes and fractional Bayes factors for the complete family of models.
    Martínez CA; Khare K; Banerjee A; Elzo MA
    J Theor Biol; 2017 Mar; 417():131-141. PubMed ID: 28088357
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Comparison of subset selection methods in linear regression in the context of health-related quality of life and substance abuse in Russia.
    Morozova O; Levina O; Uusküla A; Heimer R
    BMC Med Res Methodol; 2015 Aug; 15():71. PubMed ID: 26319135
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Bayesian regularization in multiple-indicators multiple-causes models.
    Zhang L; Liang X
    Psychol Methods; 2024 Aug; 29(4):679-703. PubMed ID: 37498692
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.