These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
144 related articles for article (PubMed ID: 38042884)
1. Sintering-induced cation displacement in protonic ceramics and way for its suppression. Liu Z; Song Y; Xiong X; Zhang Y; Cui J; Zhu J; Li L; Zhou J; Zhou C; Hu Z; Kim G; Ciucci F; Shao Z; Wang JQ; Zhang L Nat Commun; 2023 Dec; 14(1):7984. PubMed ID: 38042884 [TBL] [Abstract][Full Text] [Related]
2. Rapid Laser Reactive Sintering for Sustainable and Clean Preparation of Protonic Ceramics. Mu S; Huang H; Ishii A; Hong Y; Santomauro A; Zhao Z; Zou M; Peng F; Brinkman KS; Xiao H; Tong J ACS Omega; 2020 May; 5(20):11637-11642. PubMed ID: 32478254 [TBL] [Abstract][Full Text] [Related]
3. Enhanced Proton Conduction with Low Oxygen Vacancy Concentration and Favorable Hydration for Protonic Ceramic Fuel Cells Cathode. Wang X; Li W; Zhou C; Xu M; Hu Z; Pao CW; Zhou W; Shao Z ACS Appl Mater Interfaces; 2023 Jan; 15(1):1339-1347. PubMed ID: 36579819 [TBL] [Abstract][Full Text] [Related]
4. Interfacial Modification for High-Efficient Reversible Protonic Ceramic Cell with a Spin-Coated BaZr Chen J; Lu X; Zhang J; Zhao X; Liu W; Zhang J; Shao T; Zhao Y; Li Y ACS Appl Mater Interfaces; 2024 Oct; 16(39):52200-52209. PubMed ID: 39305270 [TBL] [Abstract][Full Text] [Related]
5. Effect of NiO Addition on the Sintering and Electrochemical Properties of BaCe Peng C; Zhao B; Meng X; Ye X; Luo T; Xin X; Wen Z Membranes (Basel); 2024 Feb; 14(3):. PubMed ID: 38535280 [TBL] [Abstract][Full Text] [Related]
6. Rapid Gas-Phase Synthesis of the Perovskite-Type BaCe Wu Z; Zhang Y; Liu Z; Ma H; Jin X; Yang G; Shi Y; Shao Z; Li S ACS Appl Mater Interfaces; 2022 Oct; 14(42):47568-47577. PubMed ID: 36228663 [TBL] [Abstract][Full Text] [Related]
7. Realizing Simultaneous Detrimental Reactions Suppression and Multiple Benefits Generation from Nickel Doping toward Improved Protonic Ceramic Fuel Cell Performance. Song Y; Chen J; Yang M; Xu M; Liu D; Liang M; Wang Y; Ran R; Wang W; Ciucci F; Shao Z Small; 2022 Apr; 18(16):e2200450. PubMed ID: 35277919 [TBL] [Abstract][Full Text] [Related]
8. Synergistic Coupling of Proton Conductors BaZr Li W; Guan B; Ma L; Tian H; Liu X ACS Appl Mater Interfaces; 2019 May; 11(20):18323-18330. PubMed ID: 31051074 [TBL] [Abstract][Full Text] [Related]
9. Lattice Incorporation of Cu Yang S; Zhang S; Sun C; Ye X; Wen Z ACS Appl Mater Interfaces; 2018 Dec; 10(49):42387-42396. PubMed ID: 30422623 [TBL] [Abstract][Full Text] [Related]
10. Improved mechanical strength, proton conductivity and power density in an 'all-protonic' ceramic fuel cell at intermediate temperature. Azad AK; Abdalla AM; Afif A; Azad A; Afroze S; Idris AC; Park JY; Saqib M; Radenahmad N; Hossain S; Elius IB; Al-Mamun M; Zaini J; Al-Hinai A; Reza MS; Irvine JTS Sci Rep; 2021 Sep; 11(1):19382. PubMed ID: 34588598 [TBL] [Abstract][Full Text] [Related]
11. Operation Protocols To Improve Durability of Protonic Ceramic Fuel Cells. Park KY; Kim YD; Lee JI; Saqib M; Shin JS; Seo Y; Kim JH; Lim HT; Park JY ACS Appl Mater Interfaces; 2019 Jan; 11(1):457-468. PubMed ID: 30525425 [TBL] [Abstract][Full Text] [Related]
12. High-Efficiency Direct Ammonia Fuel Cells Based on BaZr Aoki Y; Yamaguchi T; Kobayashi S; Kowalski D; Zhu C; Habazaki H Glob Chall; 2018 Jan; 2(1):1700088. PubMed ID: 31565304 [TBL] [Abstract][Full Text] [Related]
13. Ultrafast Sintered Composite Cathode Incorporating a Negative Thermal Expansion Material for High-Performance Protonic Ceramic Fuel Cells. Tahir A; Belotti A; Song Y; Wang Y; Maradesa A; Li J; Tian Y; Ciucci F ACS Appl Mater Interfaces; 2024 Aug; 16(34):44645-44654. PubMed ID: 39149936 [TBL] [Abstract][Full Text] [Related]
14. Lowering grain boundary resistance of BaZr(0.8)Y(0.2)O(3-δ) with LiNO3 sintering-aid improves proton conductivity for fuel cell operation. Sun Z; Fabbri E; Bi L; Traversa E Phys Chem Chem Phys; 2011 May; 13(17):7692-700. PubMed ID: 21103585 [TBL] [Abstract][Full Text] [Related]
15. Building Ruddlesden-Popper and Single Perovskite Nanocomposites: A New Strategy to Develop High-Performance Cathode for Protonic Ceramic Fuel Cells. Shi H; Su C; Xu X; Pan Y; Yang G; Ran R; Shao Z Small; 2021 Sep; 17(35):e2101872. PubMed ID: 34254432 [TBL] [Abstract][Full Text] [Related]
16. Oxygen Electrode PrBa Bai H; Zhang Y; Chu J; Zhou Q; Lan H; Zhou J ACS Appl Mater Interfaces; 2023 Aug; 15(32):38581-38591. PubMed ID: 37535454 [TBL] [Abstract][Full Text] [Related]
17. A-Site Nonstoichiometric Ba Wei K; Guo Z; Chen F; Liu H; Ling Y ACS Appl Mater Interfaces; 2023 Oct; 15(42):49785-49793. PubMed ID: 37816140 [TBL] [Abstract][Full Text] [Related]
18. Harnessing High-Throughput Computational Methods to Accelerate the Discovery of Optimal Proton Conductors for High-Performance and Durable Protonic Ceramic Electrochemical Cells. Luo Z; Hu X; Zhou Y; Ding Y; Zhang W; Li T; Liu M Adv Mater; 2024 May; 36(18):e2311159. PubMed ID: 38251928 [TBL] [Abstract][Full Text] [Related]
19. Demonstrating the potential of yttrium-doped barium zirconate electrolyte for high-performance fuel cells. Bae K; Jang DY; Choi HJ; Kim D; Hong J; Kim BK; Lee JH; Son JW; Shim JH Nat Commun; 2017 Feb; 8():14553. PubMed ID: 28230080 [TBL] [Abstract][Full Text] [Related]