These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

131 related articles for article (PubMed ID: 38042907)

  • 1. Designing Cu
    Meng H; Yang Y; Shen T; Yin Z; Wang L; Liu W; Yin P; Ren Z; Zheng L; Zhang J; Xiao FS; Wei M
    Nat Commun; 2023 Dec; 14(1):7980. PubMed ID: 38042907
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Identifying the catalyst chemical state and adsorbed species during methanol conversion on copper using ambient pressure X-ray spectroscopies.
    Eren B; Sole CG; Lacasa JS; Grinter D; Venturini F; Held G; Esconjauregui CS; Weatherup RS
    Phys Chem Chem Phys; 2020 Sep; 22(34):18806-18814. PubMed ID: 32242587
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Synthesis, characterization, and methanol steam reforming performance of Cu/perovskite-structured catalysts.
    Mortazavi-Manesh A; Safari N; Bahadoran F; Khani Y
    Heliyon; 2023 Mar; 9(3):e13742. PubMed ID: 36873539
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Achieving efficient and robust catalytic reforming on dual-sites of Cu species.
    Ma K; Tian Y; Zhao ZJ; Cheng Q; Ding T; Zhang J; Zheng L; Jiang Z; Abe T; Tsubaki N; Gong J; Li X
    Chem Sci; 2019 Mar; 10(9):2578-2584. PubMed ID: 30996972
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effects of P:Ni Ratio on Methanol Steam Reforming on Nickel Phosphide Catalysts.
    Almithn A
    Molecules; 2023 Aug; 28(16):. PubMed ID: 37630331
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A Highly Stable Copper-Based Catalyst for Clarifying the Catalytic Roles of Cu
    Yang H; Chen Y; Cui X; Wang G; Cen Y; Deng T; Yan W; Gao J; Zhu S; Olsbye U; Wang J; Fan W
    Angew Chem Int Ed Engl; 2018 Feb; 57(7):1836-1840. PubMed ID: 29314496
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Methanol decomposition reactions over a boron-doped graphene supported Ru-Pt catalyst.
    Damte JY; Lyu SL; Leggesse EG; Jiang JC
    Phys Chem Chem Phys; 2018 Apr; 20(14):9355-9363. PubMed ID: 29564450
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Comparison of a commercial water-gas shift catalyst and La modified Cu-based catalysts prepared by deposition-precipitation in methanol steam reforming.
    Özcan O; Akin AN
    Turk J Chem; 2022; 46(4):1069-1080. PubMed ID: 37538757
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Methane Activation on H-ZSM-5 Zeolite with Low Copper Loading. The Nature of Active Sites and Intermediates Identified with the Combination of Spectroscopic Methods.
    Gabrienko AA; Yashnik SA; Kolganov AA; Sheveleva AM; Arzumanov SS; Fedin MV; Tuna F; Stepanov AG
    Inorg Chem; 2020 Feb; 59(3):2037-2050. PubMed ID: 31971794
    [TBL] [Abstract][Full Text] [Related]  

  • 10. In situ studies on the structure of copper oxide/zinc oxide catalysts.
    Günter MM; Bems B; Schlögl R; Ressler T
    J Synchrotron Radiat; 2001 Mar; 8(Pt 2):619-21. PubMed ID: 11512872
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Light-Induced Dynamic Restructuring of Cu Active Sites on TiO
    Luo S; Song H; Ichihara F; Oshikiri M; Lu W; Tang DM; Li S; Li Y; Li Y; Davin P; Kako T; Lin H; Ye J
    J Am Chem Soc; 2023 Sep; 145(37):20530-20538. PubMed ID: 37677133
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Producing hydrogen by catalytic steam reforming of methanol using non-noble metal catalysts.
    Deng Y; Li S; Appels L; Dewil R; Zhang H; Baeyens J; Mikulcic H
    J Environ Manage; 2022 Nov; 321():116019. PubMed ID: 36029634
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Where does methanol lose hydrogen to trigger steam reforming? A revisit of methanol dehydrogenation on the PdZn alloy model obtained from kinetic Monte Carlo simulations.
    Cheng F; Chen ZX
    Phys Chem Chem Phys; 2016 Feb; 18(5):3936-43. PubMed ID: 26771029
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Methanol steam reforming promoted by molten salt-modified platinum on alumina catalysts.
    Kusche M; Agel F; Ní Bhriain N; Kaftan A; Laurin M; Libuda J; Wasserscheid P
    ChemSusChem; 2014 Sep; 7(9):2516-26. PubMed ID: 25124120
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Tuning the properties of copper-based catalysts based on molecular in situ studies of model systems.
    Stacchiola DJ
    Acc Chem Res; 2015 Jul; 48(7):2151-8. PubMed ID: 26103058
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Dual active sites over Cu-ZnO-ZrO
    Sun X; Jin Y; Cheng Z; Lan G; Wang X; Qiu Y; Wang Y; Liu H; Li Y
    J Environ Sci (China); 2023 Sep; 131():162-172. PubMed ID: 37225377
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Interplay of Support Chemistry and Reaction Conditions on Copper Catalyzed Methanol Steam Reforming.
    Díaz-Pérez MA; Moya J; Serrano-Ruiz JC; Faria J
    Ind Eng Chem Res; 2018 Nov; 57(45):15268-15279. PubMed ID: 30487661
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Comparative Spectroscopic Study Revealing Why the CO
    El-Nagar GA; Yang F; Stojkovikj S; Mebs S; Gupta S; Ahmet IY; Dau H; Mayer MT
    ACS Catal; 2022 Dec; 12(24):15576-15589. PubMed ID: 36590316
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Combining Atomic Layer Deposition with Surface Organometallic Chemistry to Enhance Atomic-Scale Interactions and Improve the Activity and Selectivity of Cu-Zn/SiO
    Zhou H; Docherty SR; Phongprueksathat N; Chen Z; Bukhtiyarov AV; Prosvirin IP; Safonova OV; Urakawa A; Copéret C; Müller CR; Fedorov A
    JACS Au; 2023 Sep; 3(9):2536-2549. PubMed ID: 37772188
    [TBL] [Abstract][Full Text] [Related]  

  • 20. CO
    Guzmán H; Salomone F; Bensaid S; Castellino M; Russo N; Hernández S
    ACS Appl Mater Interfaces; 2022 Jan; 14(1):517-530. PubMed ID: 34965095
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.