BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

136 related articles for article (PubMed ID: 38043123)

  • 1. Improvement of 2D cine image quality using 3D priors and cycle generative adversarial network for low field MRI-guided radiation therapy.
    Dong Y; Yang F; Wen J; Cai J; Zeng F; Liu M; Li S; Wang J; Ford JC; Portelance L; Yang Y
    Med Phys; 2024 May; 51(5):3495-3509. PubMed ID: 38043123
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Compensation cycle consistent generative adversarial networks (Comp-GAN) for synthetic CT generation from MR scans with truncated anatomy.
    Zhao Y; Wang H; Yu C; Court LE; Wang X; Wang Q; Pan T; Ding Y; Phan J; Yang J
    Med Phys; 2023 Jul; 50(7):4399-4414. PubMed ID: 36698291
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Inter-scanner super-resolution of 3D cine MRI using a transfer-learning network for MRgRT.
    Yoon YH; Chun J; Kiser K; Marasini S; Curcuru A; Gach HM; Kim JS; Kim T
    Phys Med Biol; 2024 May; 69(11):. PubMed ID: 38663411
    [No Abstract]   [Full Text] [Related]  

  • 4. Evaluation of super-resolution on 50 pancreatic cancer patients with real-time cine MRI from 0.35T MRgRT.
    Chun J; Lewis B; Ji Z; Shin JI; Park JC; Kim JS; Kim T
    Biomed Phys Eng Express; 2021 Aug; 7(5):. PubMed ID: 34375963
    [TBL] [Abstract][Full Text] [Related]  

  • 5. MRI super-resolution reconstruction for MRI-guided adaptive radiotherapy using cascaded deep learning: In the presence of limited training data and unknown translation model.
    Chun J; Zhang H; Gach HM; Olberg S; Mazur T; Green O; Kim T; Kim H; Kim JS; Mutic S; Park JC
    Med Phys; 2019 Sep; 46(9):4148-4164. PubMed ID: 31309585
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Self-supervised learning for accelerated 3D high-resolution ultrasound imaging.
    Dai X; Lei Y; Wang T; Axente M; Xu D; Patel P; Jani AB; Curran WJ; Liu T; Yang X
    Med Phys; 2021 Jul; 48(7):3916-3926. PubMed ID: 33993508
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Technical note: Minimizing CIED artifacts on a 0.35 T MRI-Linac using deep learning.
    Curcuru AN; Yang D; An H; Cuculich PS; Robinson CG; Gach HM
    J Appl Clin Med Phys; 2024 Mar; 25(3):e14304. PubMed ID: 38368615
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Volumetric MRI with sparse sampling for MR-guided 3D motion tracking via sparse prior-augmented implicit neural representation learning.
    Liu L; Shen L; Johansson A; Balter JM; Cao Y; Vitzthum L; Xing L
    Med Phys; 2024 Apr; 51(4):2526-2537. PubMed ID: 38014764
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Generating synthesized computed tomography (CT) from cone-beam computed tomography (CBCT) using CycleGAN for adaptive radiation therapy.
    Liang X; Chen L; Nguyen D; Zhou Z; Gu X; Yang M; Wang J; Jiang S
    Phys Med Biol; 2019 Jun; 64(12):125002. PubMed ID: 31108465
    [TBL] [Abstract][Full Text] [Related]  

  • 10. 3D cine-magnetic resonance imaging using spatial and temporal implicit neural representation learning (STINR-MR).
    Shao HC; Mengke T; Deng J; Zhang Y
    Phys Med Biol; 2024 Apr; 69(9):. PubMed ID: 38479004
    [No Abstract]   [Full Text] [Related]  

  • 11. Synthesizing high-resolution magnetic resonance imaging using parallel cycle-consistent generative adversarial networks for fast magnetic resonance imaging.
    Xie H; Lei Y; Wang T; Roper J; Dhabaan AH; Bradley JD; Liu T; Mao H; Yang X
    Med Phys; 2022 Jan; 49(1):357-369. PubMed ID: 34821395
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Double U-Net CycleGAN for 3D MR to CT image synthesis.
    Sun B; Jia S; Jiang X; Jia F
    Int J Comput Assist Radiol Surg; 2023 Jan; 18(1):149-156. PubMed ID: 35984606
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Real-time motion monitoring using orthogonal cine MRI during MR-guided adaptive radiation therapy for abdominal tumors on 1.5T MR-Linac.
    Jassar H; Tai A; Chen X; Keiper TD; Paulson E; Lathuilière F; Bériault S; Hébert F; Savard L; Cooper DT; Cloake S; Li XA
    Med Phys; 2023 May; 50(5):3103-3116. PubMed ID: 36893292
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Synthetic CT reconstruction using a deep spatial pyramid convolutional framework for MR-only breast radiotherapy.
    Olberg S; Zhang H; Kennedy WR; Chun J; Rodriguez V; Zoberi I; Thomas MA; Kim JS; Mutic S; Green OL; Park JC
    Med Phys; 2019 Sep; 46(9):4135-4147. PubMed ID: 31309586
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Feasibility of delivered dose reconstruction for MR-guided SBRT of pancreatic tumors with fast, real-time 3D cine MRI.
    Grimbergen G; Pötgens GG; Eijkelenkamp H; Raaymakers BW; Intven MPW; Meijer GJ
    Radiother Oncol; 2023 May; 182():109506. PubMed ID: 36736589
    [TBL] [Abstract][Full Text] [Related]  

  • 16. High-fidelity fast volumetric brain MRI using synergistic wave-controlled aliasing in parallel imaging and a hybrid denoising generative adversarial network (HDnGAN).
    Li Z; Tian Q; Ngamsombat C; Cartmell S; Conklin J; Filho ALMG; Lo WC; Wang G; Ying K; Setsompop K; Fan Q; Bilgic B; Cauley S; Huang SY
    Med Phys; 2022 Feb; 49(2):1000-1014. PubMed ID: 34961944
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Unsupervised arterial spin labeling image superresolution via multiscale generative adversarial network.
    Cui J; Gong K; Han P; Liu H; Li Q
    Med Phys; 2022 Apr; 49(4):2373-2385. PubMed ID: 35048390
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Improving accelerated 3D imaging in MRI-guided radiotherapy for prostate cancer using a deep learning method.
    Zhu J; Chen X; Liu Y; Yang B; Wei R; Qin S; Yang Z; Hu Z; Dai J; Men K
    Radiat Oncol; 2023 Jul; 18(1):108. PubMed ID: 37393282
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Intra-frame motion deterioration effects and deep-learning-based compensation in MR-guided radiotherapy.
    Sui Z; Palaniappan P; Brenner J; Paganelli C; Kurz C; Landry G; Riboldi M
    Med Phys; 2024 Mar; 51(3):1899-1917. PubMed ID: 37665948
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Deep learning approaches using 2D and 3D convolutional neural networks for generating male pelvic synthetic computed tomography from magnetic resonance imaging.
    Fu J; Yang Y; Singhrao K; Ruan D; Chu FI; Low DA; Lewis JH
    Med Phys; 2019 Sep; 46(9):3788-3798. PubMed ID: 31220353
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.