BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

130 related articles for article (PubMed ID: 38043254)

  • 1. Optimization of apple fruit flavor by MdVHP1-2 via modulation of soluble sugar and organic acid accumulation.
    Xiang Y; Huang XY; Zhao YW; Wang CK; Sun Q; Hu DG
    Plant Physiol Biochem; 2024 Jan; 206():108227. PubMed ID: 38043254
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Expression analysis and functional characterization of apple MdVHP1 gene reveals its involvement in Na(+), malate and soluble sugar accumulation.
    Yao YX; Dong QL; You CX; Zhai H; Hao YJ
    Plant Physiol Biochem; 2011 Oct; 49(10):1201-8. PubMed ID: 21696976
    [TBL] [Abstract][Full Text] [Related]  

  • 3. MdVHP1 encodes an apple vacuolar H(+)-PPase and enhances stress tolerance in transgenic apple callus and tomato.
    Dong QL; Liu DD; An XH; Hu DG; Yao YX; Hao YJ
    J Plant Physiol; 2011 Nov; 168(17):2124-33. PubMed ID: 21840622
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The MdCBF1/2-MdTST1/2 module regulates sugar accumulation in response to low temperature in apple.
    Li B; Qu S; Kang J; Peng Y; Yang N; Ma B; Ruan YL; Ma F; Li M; Zhu L
    Plant J; 2024 May; 118(3):787-801. PubMed ID: 38206080
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The R2R3-MYB transcription factor MdMYB73 is involved in malate accumulation and vacuolar acidification in apple.
    Hu DG; Li YY; Zhang QY; Li M; Sun CH; Yu JQ; Hao YJ
    Plant J; 2017 Aug; 91(3):443-454. PubMed ID: 28423209
    [TBL] [Abstract][Full Text] [Related]  

  • 6. MdbHLH3 modulates apple soluble sugar content by activating phosphofructokinase gene expression.
    Yu JQ; Gu KD; Zhang LL; Sun CH; Zhang QY; Wang JH; Wang CK; Wang WY; Du MC; Hu DG
    J Integr Plant Biol; 2022 Apr; 64(4):884-900. PubMed ID: 35199464
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Combined Profiling of Transcriptome and DNA Methylome Reveal Genes Involved in Accumulation of Soluble Sugars and Organic Acid in Apple Fruits.
    Ma W; Li B; Zheng L; Peng Y; Tian R; Yuan Y; Zhu L; Su J; Ma F; Li M; Ma B
    Foods; 2021 Sep; 10(9):. PubMed ID: 34574306
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Comparative assessment of sugar and malic acid composition in cultivated and wild apples.
    Ma B; Chen J; Zheng H; Fang T; Ogutu C; Li S; Han Y; Wu B
    Food Chem; 2015 Apr; 172():86-91. PubMed ID: 25442527
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Transcriptional Landscape and Dynamics Involved in Sugar and Acid Accumulation during Apple Fruit Development.
    Li B; Zhu L; Yang N; Qu S; Cao W; Ma W; Wei X; Ma B; Ma F; Fu A; Li M
    Plant Physiol; 2024 May; ():. PubMed ID: 38728429
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Changes and response mechanism of sugar and organic acids in fruits under water deficit stress.
    Ma WF; Li YB; Nai GJ; Liang GP; Ma ZH; Chen BH; Mao J
    PeerJ; 2022; 10():e13691. PubMed ID: 36039369
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Abscisic acid and regulation of the sugar transporter gene MdSWEET9b promote apple sugar accumulation.
    Zhang S; Wang H; Wang T; Zhang J; Liu W; Fang H; Zhang Z; Peng F; Chen X; Wang N
    Plant Physiol; 2023 Jul; 192(3):2081-2101. PubMed ID: 36815241
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Identification of genes associated with soluble sugar and organic acid accumulation in 'Huapi' kumquat (Fortunella crassifolia Swingle) via transcriptome analysis.
    Wei QJ; Ma QL; Zhou GF; Liu X; Ma ZZ; Gu QQ
    J Sci Food Agric; 2021 Aug; 101(10):4321-4331. PubMed ID: 33417244
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Comparative Proteomic Analysis Reveals Key Proteins Linked to the Accumulation of Soluble Sugars and Organic Acids in the Mature Fruits of the Wild
    Ma B; Ding Y; Li C; Li M; Ma F; Yuan Y
    Plants (Basel); 2019 Nov; 8(11):. PubMed ID: 31717908
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Comparative transcriptome analysis reveals key genes potentially related to organic acid and sugar accumulation in loquat.
    Yang J; Zhang J; Niu XQ; Zheng XL; Chen X; Zheng GH; Wu JC
    PLoS One; 2021; 16(4):e0238873. PubMed ID: 33914776
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Expression patterns of genes involved in sugar metabolism and accumulation during apple fruit development.
    Li M; Feng F; Cheng L
    PLoS One; 2012; 7(3):e33055. PubMed ID: 22412983
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Role of Vacuolar H+-inorganic pyrophosphatase in tomato fruit development.
    Mohammed SA; Nishio S; Takahashi H; Shiratake K; Ikeda H; Kanahama K; Kanayama Y
    J Exp Bot; 2012 Sep; 63(15):5613-21. PubMed ID: 22915738
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Unraveling a genetic roadmap for improved taste in the domesticated apple.
    Liao L; Zhang W; Zhang B; Fang T; Wang XF; Cai Y; Ogutu C; Gao L; Chen G; Nie X; Xu J; Zhang Q; Ren Y; Yu J; Wang C; Deng CH; Ma B; Zheng B; You CX; Hu DG; Espley R; Lin-Wang K; Yao JL; Allan AC; Khan A; Korban SS; Fei Z; Ming R; Hao YJ; Li L; Han Y
    Mol Plant; 2021 Sep; 14(9):1454-1471. PubMed ID: 34022440
    [TBL] [Abstract][Full Text] [Related]  

  • 18. UV-C treatment promotes quality of early ripening apple fruit by regulating malate metabolizing genes during postharvest storage.
    Onik JC; Xie Y; Duan Y; Hu X; Wang Z; Lin Q
    PLoS One; 2019; 14(4):e0215472. PubMed ID: 30990828
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Plasma Membrane-Localized Transporter MdSWEET12 Is Involved in Sucrose Unloading in Apple Fruit.
    Zhang B; Li YN; Wu BH; Yuan YY; Zhao ZY
    J Agric Food Chem; 2022 Dec; 70(49):15517-15530. PubMed ID: 36468541
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Alternative Splicing Underpins the ALMT9 Transporter Function for Vacuolar Malic Acid Accumulation in Apple.
    Li C; Krishnan S; Zhang M; Hu D; Meng D; Riedelsberger J; Dougherty L; Xu K; PiƱeros MA; Cheng L
    Adv Sci (Weinh); 2024 Jun; 11(22):e2310159. PubMed ID: 38514904
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.