These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

186 related articles for article (PubMed ID: 38043691)

  • 41. Macrophage Polarization, Metabolic Reprogramming, and Inflammatory Effects in Ischemic Heart Disease.
    Sun X; Li Y; Deng Q; Hu Y; Dong J; Wang W; Wang Y; Li C
    Front Immunol; 2022; 13():934040. PubMed ID: 35924253
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Inorganic material based macrophage regulation for cancer therapy: basic concepts and recent advances.
    Zhao R; Cao J; Yang X; Zhang Q; Iqbal MZ; Lu J; Kong X
    Biomater Sci; 2021 Jul; 9(13):4568-4590. PubMed ID: 34113942
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Macrophage phenotypes in atherosclerosis.
    Colin S; Chinetti-Gbaguidi G; Staels B
    Immunol Rev; 2014 Nov; 262(1):153-66. PubMed ID: 25319333
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Sequential drug delivery to modulate macrophage behavior and enhance implant integration.
    O'Brien EM; Risser GE; Spiller KL
    Adv Drug Deliv Rev; 2019; 149-150():85-94. PubMed ID: 31103451
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Macrophage/microglia polarization for the treatment of diabetic retinopathy.
    Yao Y; Li J; Zhou Y; Wang S; Zhang Z; Jiang Q; Li K
    Front Endocrinol (Lausanne); 2023; 14():1276225. PubMed ID: 37842315
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Pharmacological modulation of monocytes and macrophages.
    Mantovani A; Vecchi A; Allavena P
    Curr Opin Pharmacol; 2014 Aug; 17():38-44. PubMed ID: 25062123
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Single-domain antibody fusion proteins can target and shuttle functional proteins into macrophage mannose receptor expressing macrophages.
    De Vlaeminck Y; Lecocq Q; Giron P; Heirman C; Geeraerts X; Bolli E; Movahedi K; Massa S; Schoonooghe S; Thielemans K; Goyvaerts C; Van Ginderachter JA; Breckpot K
    J Control Release; 2019 Apr; 299():107-120. PubMed ID: 30797866
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Macrophage-derived exosome-mimetic hybrid vesicles for tumor targeted drug delivery.
    Rayamajhi S; Nguyen TDT; Marasini R; Aryal S
    Acta Biomater; 2019 Aug; 94():482-494. PubMed ID: 31129363
    [TBL] [Abstract][Full Text] [Related]  

  • 49. [Macrophage activation in atherosclerosis. Message 2. Effects of factors on macrophage activation].
    Nikiforov NG; Elizova NV; Nikitina NA; Karagodin VP; Orekhov AN
    Patol Fiziol Eksp Ter; 2016; 60(1):59-64. PubMed ID: 29215250
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Targeted drug delivery to macrophages.
    Jain NK; Mishra V; Mehra NK
    Expert Opin Drug Deliv; 2013 Mar; 10(3):353-67. PubMed ID: 23289618
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Macrophage cell membrane infused biomimetic liposomes for glioblastoma targeted therapy.
    Mendanha D; Vieira de Castro J; Casanova MR; Gimondi S; Ferreira H; Neves NM
    Nanomedicine; 2023 Apr; 49():102663. PubMed ID: 36773669
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Lentivirus delivery of IL-10 to promote and sustain macrophage polarization towards an anti-inflammatory phenotype.
    Boehler RM; Kuo R; Shin S; Goodman AG; Pilecki MA; Gower RM; Leonard JN; Shea LD
    Biotechnol Bioeng; 2014 Jun; 111(6):1210-21. PubMed ID: 24375008
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Macrophage Polarization and Its Role in Liver Disease.
    Wang C; Ma C; Gong L; Guo Y; Fu K; Zhang Y; Zhou H; Li Y
    Front Immunol; 2021; 12():803037. PubMed ID: 34970275
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Targeted delivery systems for biological therapies of inflammatory diseases.
    Tran TH; Amiji MM
    Expert Opin Drug Deliv; 2015 Mar; 12(3):393-414. PubMed ID: 25366552
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Macrophage cell membrane-based nanoparticles: a new promising biomimetic platform for targeted delivery and treatment.
    Wu Y; Wan S; Yang S; Hu H; Zhang C; Lai J; Zhou J; Chen W; Tang X; Luo J; Zhou X; Yu L; Wang L; Wu A; Fan Q; Wu J
    J Nanobiotechnology; 2022 Dec; 20(1):542. PubMed ID: 36575429
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Red blood cell-derived nanovesicles for safe and efficient macrophage-targeted drug delivery in vivo.
    Wan X; Zhang S; Wang F; Fan W; Wu C; Mao K; Wang H; Hu Z; Yang YG; Sun T
    Biomater Sci; 2018 Dec; 7(1):187-195. PubMed ID: 30421747
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Interactions with the macrophages: An emerging targeted approach using novel drug delivery systems in respiratory diseases.
    Mehta M; Deeksha ; Sharma N; Vyas M; Khurana N; Maurya PK; Singh H; Andreoli de Jesus TP; Dureja H; Chellappan DK; Gupta G; Wadhwa R; Collet T; Hansbro PM; Dua K; Satija S
    Chem Biol Interact; 2019 May; 304():10-19. PubMed ID: 30849336
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Translational Nano-Medicines: Targeted Therapeutic Delivery for Cancer and Inflammatory Diseases.
    Talekar M; Tran TH; Amiji M
    AAPS J; 2015 Jul; 17(4):813-27. PubMed ID: 25921939
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Osteoclast stimulatory transmembrane protein induces a phenotypic switch in macrophage polarization suppressing an M1 pro-inflammatory state.
    Yuan H; He J; Zhang G; Zhang D; Kong X; Chen F
    Acta Biochim Biophys Sin (Shanghai); 2017 Oct; 49(10):935-944. PubMed ID: 28981605
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Nanomedicines for dysfunctional macrophage-associated diseases.
    He H; Ghosh S; Yang H
    J Control Release; 2017 Feb; 247():106-126. PubMed ID: 28057522
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.