These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
109 related articles for article (PubMed ID: 38043808)
1. Heterogeneity analysis of main driving factors affecting potential evapotranspiration changes across different climate regions. Liu W; Zhang B; Wei Z; Wang Y; Tong L; Guo J; Han X; Han C Sci Total Environ; 2024 Feb; 912():168991. PubMed ID: 38043808 [TBL] [Abstract][Full Text] [Related]
2. Spatiotemporal variation of potential evapotranspiration and its dominant factors during 1970-2020 across the Sichuan-Chongqing region, China. Zheng Q; He J; Qin M; Wu X; Liu T; Huang X PLoS One; 2022; 17(6):e0268702. PubMed ID: 35749445 [TBL] [Abstract][Full Text] [Related]
3. [Recent 40 years inter-decadal fluctuation of dry and wet climate boundary and its cause in Liaoning Province]. Sun F; Yuan J Ying Yong Sheng Tai Xue Bao; 2006 Jul; 17(7):1274-9. PubMed ID: 17044506 [TBL] [Abstract][Full Text] [Related]
4. Spatiotemporal evolution of dry and wet and quantitative analysis of the influence of meteorological factors based on MI and the FAO P-M model. Ma Y; Niu Z; Sun D; Wang X Sci Rep; 2024 Sep; 14(1):21343. PubMed ID: 39266590 [TBL] [Abstract][Full Text] [Related]
5. Revisiting the contribution of different factors in determining the changes in potential evapotranspiration over China. Shen Y; Wang Q; Feng Z; Li W PLoS One; 2024; 19(4):e0299468. PubMed ID: 38625873 [TBL] [Abstract][Full Text] [Related]
6. Spatial and temporal evolution of climatic factors and its impacts on potential evapotranspiration in Loess Plateau of Northern Shaanxi, China. Li C; Wu PT; Li XL; Zhou TW; Sun SK; Wang YB; Luan XB; Yu X Sci Total Environ; 2017 Jul; 589():165-172. PubMed ID: 28258753 [TBL] [Abstract][Full Text] [Related]
7. Spatiotemporal pattern of reference crop evapotranspiration and its response to meteorological factors in Northwest China over years 2000-2019. Zhang J; Deng M; Yang T; Pang M; Wang Z Environ Sci Pollut Res Int; 2022 Oct; 29(46):69831-69848. PubMed ID: 35576028 [TBL] [Abstract][Full Text] [Related]
8. [Spatiotemporal variation and driving factors of growing season NDVI in the Tibetan Pla-teau, China.]. Yang D; Yi GH; Zhang TB; Li JJ; Qin YB; Wen B; Liu ZY Ying Yong Sheng Tai Xue Bao; 2021 Apr; 32(4):1361-1372. PubMed ID: 33899405 [TBL] [Abstract][Full Text] [Related]
9. Spatiotemporal changes and driving factors of vegetation in 14 different climatic regions in the global from 1981 to 2018. Li G; Chen W; Zhang X; Yang Z; Wang Z; Bi P Environ Sci Pollut Res Int; 2022 Oct; 29(50):75322-75337. PubMed ID: 35650342 [TBL] [Abstract][Full Text] [Related]
10. Meteorological driving forces of reference evapotranspiration and their trends in California. Ahmadi A; Daccache A; Snyder RL; Suvočarev K Sci Total Environ; 2022 Nov; 849():157823. PubMed ID: 35931171 [TBL] [Abstract][Full Text] [Related]
11. Spatial-temporal heterogeneity of hand, foot and mouth disease and impact of meteorological factors in arid/ semi-arid regions: a case study in Ningxia, China. Li J; Zhang X; Wang L; Xu C; Xiao G; Wang R; Zheng F; Wang F BMC Public Health; 2019 Nov; 19(1):1482. PubMed ID: 31703659 [TBL] [Abstract][Full Text] [Related]
12. Temporal variations in reference evapotranspiration in the Tarim River basin, Central Asia. Wu H; Xu M; Peng Z; Chen X PLoS One; 2021; 16(6):e0252840. PubMed ID: 34133432 [TBL] [Abstract][Full Text] [Related]
13. Changes in reference evapotranspiration and its driving factors in the middle reaches of Yellow River Basin, China. She D; Xia J; Zhang Y Sci Total Environ; 2017 Dec; 607-608():1151-1162. PubMed ID: 28728307 [TBL] [Abstract][Full Text] [Related]
14. Interactions between pre- or postservice climatic factors, parity, and weaning-to-first-mating interval for total number of pigs born of female pigs serviced during hot and humid or cold seasons. Iida R; Koketsu Y J Anim Sci; 2014 Sep; 92(9):4180-8. PubMed ID: 25023804 [TBL] [Abstract][Full Text] [Related]
15. Effects and contributions of meteorological drought on agricultural drought under different climatic zones and vegetation types in Northwest China. Cao S; Zhang L; He Y; Zhang Y; Chen Y; Yao S; Yang W; Sun Q Sci Total Environ; 2022 May; 821():153270. PubMed ID: 35085634 [TBL] [Abstract][Full Text] [Related]
16. Impacts of potential evapotranspiration on drought phenomena in different regions and climate zones. Um MJ; Kim Y; Park D; Jung K; Wang Z; Kim MM; Shin H Sci Total Environ; 2020 Feb; 703():135590. PubMed ID: 31761366 [TBL] [Abstract][Full Text] [Related]
17. Assessment of spatiotemporal variability and trend analysis of reference crop evapotranspiration for the southern region of Peninsular India. Ramachandra JT; Veerappa SRN; Udupi DA Environ Sci Pollut Res Int; 2022 Jun; 29(28):41953-41970. PubMed ID: 34406568 [TBL] [Abstract][Full Text] [Related]
18. Analysis of the metabolic pathways affected by hot-humid or dry climate based on fecal metabolomics coupled with serum metabolic changes in broiler chickens. Zhou Y; Liu H; Zhang M Poult Sci; 2020 Nov; 99(11):5526-5546. PubMed ID: 33142471 [TBL] [Abstract][Full Text] [Related]
19. Characteristics of surface evapotranspiration and its response to climate and land use and land cover in the Huai River Basin of eastern China. Li M; Chu R; Islam ARMT; Shen S Environ Sci Pollut Res Int; 2021 Jan; 28(1):683-699. PubMed ID: 32820438 [TBL] [Abstract][Full Text] [Related]
20. [Spatio-temporal Variation in Net Primary Productivity of Different Vegetation Types and Its Influencing Factors Exploration in Southwest China]. Xu Y; Zheng ZW; Meng YC; Pan YC; Guo ZD; Zhang Y Huan Jing Ke Xue; 2024 Jan; 45(1):262-274. PubMed ID: 38216477 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]