BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

147 related articles for article (PubMed ID: 38044130)

  • 21. Penetration Enhancers for Topical Drug Delivery to the Ocular Posterior Segment-A Systematic Review.
    Thareja A; Hughes H; Alvarez-Lorenzo C; Hakkarainen JJ; Ahmed Z
    Pharmaceutics; 2021 Feb; 13(2):. PubMed ID: 33670762
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Penetration enhancers and ocular bioadhesives: two new avenues for ophthalmic drug delivery.
    Kaur IP; Smitha R
    Drug Dev Ind Pharm; 2002 Apr; 28(4):353-69. PubMed ID: 12056529
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Effects of intestinal luminal contents and the importance of microfold cells on the ability of cell-penetrating peptides to enhance epithelial permeation of insulin.
    Kamei N; Kawano S; Abe R; Hirano S; Ogino H; Tamiwa H; Takeda-Morishita M
    Eur J Pharm Biopharm; 2020 Oct; 155():77-87. PubMed ID: 32781024
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Enhanced oral absorption of insulin using colon-specific nanoparticles co-modified with amphiphilic chitosan derivatives and cell-penetrating peptides.
    Guo F; Ouyang T; Peng T; Zhang X; Xie B; Yang X; Liang D; Zhong H
    Biomater Sci; 2019 Mar; 7(4):1493-1506. PubMed ID: 30672923
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Exploring novel and potent cell penetrating peptides in the proteome of SARS-COV-2 using bioinformatics approaches.
    Kardani K; Bolhassani A
    PLoS One; 2021; 16(2):e0247396. PubMed ID: 33606823
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Efficient intracellular delivery of nucleic acid pharmaceuticals using cell-penetrating peptides.
    Nakase I; Akita H; Kogure K; Gräslund A; Langel U; Harashima H; Futaki S
    Acc Chem Res; 2012 Jul; 45(7):1132-9. PubMed ID: 22208383
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Cell penetration: scope and limitations by the application of cell-penetrating peptides.
    Reissmann S
    J Pept Sci; 2014 Oct; 20(10):760-84. PubMed ID: 25112216
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Decoding the proteome of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) for cell-penetrating peptides involved in pathogenesis or applicable as drug delivery vectors.
    Hemmati S; Behzadipour Y; Haddad M
    Infect Genet Evol; 2020 Nov; 85():104474. PubMed ID: 32712315
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Isothiocyanate groups of 4,4'-diisothiocyanatostilbene-2,2'-disulfonate (DIDS) inhibit cell penetration of octa-arginine (R8)-fused peptides.
    Park J; Han JH; Myung SH; Kim TH
    J Pept Sci; 2020 Mar; 26(3):e3237. PubMed ID: 31852026
    [TBL] [Abstract][Full Text] [Related]  

  • 30. New generation of cell-penetrating peptides: Functionality and potential clinical application.
    Reissmann S; Filatova MP
    J Pept Sci; 2021 May; 27(5):e3300. PubMed ID: 33615648
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Enhancement of ocular drug penetration.
    Sasaki H; Yamamura K; Mukai T; Nishida K; Nakamura J; Nakashima M; Ichikawa M
    Crit Rev Ther Drug Carrier Syst; 1999; 16(1):85-146. PubMed ID: 10099899
    [TBL] [Abstract][Full Text] [Related]  

  • 32. A biomimetic peptide-drug supramolecular hydrogel as eyedrops enables controlled release of ophthalmic drugs.
    Pan M; Ren Z; Ma X; Chen L; Lv G; Liu X; Li S; Li X; Wang J
    Acta Biomater; 2023 Sep; 167():195-204. PubMed ID: 37392932
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Novel micelle carriers for cyclosporin A topical ocular delivery: in vivo cornea penetration, ocular distribution and efficacy studies.
    Di Tommaso C; Bourges JL; Valamanesh F; Trubitsyn G; Torriglia A; Jeanny JC; Behar-Cohen F; Gurny R; Möller M
    Eur J Pharm Biopharm; 2012 Jun; 81(2):257-64. PubMed ID: 22445900
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Challenge to overcome current limitations of cell-penetrating peptides.
    Kim GC; Cheon DH; Lee Y
    Biochim Biophys Acta Proteins Proteom; 2021 Apr; 1869(4):140604. PubMed ID: 33453413
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Pre-clinical investigation of the efficacy of an artificial tear solution containing hydroxypropyl-guar as a gelling agent.
    Ubels JL; Clousing DP; Van Haitsma TA; Hong BS; Stauffer P; Asgharian B; Meadows D
    Curr Eye Res; 2004 Jun; 28(6):437-44. PubMed ID: 15512952
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Cyclic Cell-Penetrating Peptides as Efficient Intracellular Drug Delivery Tools.
    Park SE; Sajid MI; Parang K; Tiwari RK
    Mol Pharm; 2019 Sep; 16(9):3727-3743. PubMed ID: 31329448
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Transdermal Properties of Cell-Penetrating Peptides: Applications and Skin Penetration Mechanisms.
    Shin HJ; Lee BK; Kang HA
    ACS Appl Bio Mater; 2024 Jan; 7(1):1-16. PubMed ID: 38079575
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Engineering PLGA nano-based systems through understanding the influence of nanoparticle properties and cell-penetrating peptides for cochlear drug delivery.
    Cai H; Liang Z; Huang W; Wen L; Chen G
    Int J Pharm; 2017 Oct; 532(1):55-65. PubMed ID: 28870763
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Ocular penetration of fluorometholone-loaded PEG-PLGA nanoparticles functionalized with cell-penetrating peptides.
    Gonzalez-Pizarro R; Parrotta G; Vera R; Sánchez-López E; Galindo R; Kjeldsen F; Badia J; Baldoma L; Espina M; García ML
    Nanomedicine (Lond); 2019 Dec; 14(23):3089-3104. PubMed ID: 31769335
    [No Abstract]   [Full Text] [Related]  

  • 40. Luteinizing hormone-releasing hormone agonist and transferrin functionalizations enhance nanoparticle delivery in a novel bovine ex vivo eye model.
    Kompella UB; Sundaram S; Raghava S; Escobar ER
    Mol Vis; 2006 Oct; 12():1185-98. PubMed ID: 17102798
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.