These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

247 related articles for article (PubMed ID: 38044400)

  • 1. Preventing spontaneous cerebral microhemorrhages in aging mice: a novel approach targeting cellular senescence with ABT263/navitoclax.
    Faakye J; Nyúl-Tóth Á; Muranyi M; Gulej R; Csik B; Shanmugarama S; Tarantini S; Negri S; Prodan C; Mukli P; Yabluchanskiy A; Conley S; Toth P; Csiszar A; Ungvari Z
    Geroscience; 2024 Feb; 46(1):21-37. PubMed ID: 38044400
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Treatment with the BCL-2/BCL-xL inhibitor senolytic drug ABT263/Navitoclax improves functional hyperemia in aged mice.
    Tarantini S; Balasubramanian P; Delfavero J; Csipo T; Yabluchanskiy A; Kiss T; Nyúl-Tóth Á; Mukli P; Toth P; Ahire C; Ungvari A; Benyo Z; Csiszar A; Ungvari Z
    Geroscience; 2021 Oct; 43(5):2427-2440. PubMed ID: 34427858
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Insulin-like growth factor 1 deficiency exacerbates hypertension-induced cerebral microhemorrhages in mice, mimicking the aging phenotype.
    Tarantini S; Valcarcel-Ares NM; Yabluchanskiy A; Springo Z; Fulop GA; Ashpole N; Gautam T; Giles CB; Wren JD; Sonntag WE; Csiszar A; Ungvari Z
    Aging Cell; 2017 Jun; 16(3):469-479. PubMed ID: 28295976
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Cerebral microhemorrhages: mechanisms, consequences, and prevention.
    Ungvari Z; Tarantini S; Kirkpatrick AC; Csiszar A; Prodan CI
    Am J Physiol Heart Circ Physiol; 2017 Jun; 312(6):H1128-H1143. PubMed ID: 28314762
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Senolytic Therapy for Cerebral Ischemia-Reperfusion Injury.
    Lim S; Kim TJ; Kim YJ; Kim C; Ko SB; Kim BS
    Int J Mol Sci; 2021 Nov; 22(21):. PubMed ID: 34769397
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Elimination of senescent cells by treatment with Navitoclax/ABT263 reverses whole brain irradiation-induced blood-brain barrier disruption in the mouse brain.
    Gulej R; Nyúl-Tóth Á; Ahire C; DelFavero J; Balasubramanian P; Kiss T; Tarantini S; Benyo Z; Pacher P; Csik B; Yabluchanskiy A; Mukli P; Kuan-Celarier A; Krizbai IA; Campisi J; Sonntag WE; Csiszar A; Ungvari Z
    Geroscience; 2023 Oct; 45(5):2983-3002. PubMed ID: 37642933
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Aging exacerbates hypertension-induced cerebral microhemorrhages in mice: role of resveratrol treatment in vasoprotection.
    Toth P; Tarantini S; Springo Z; Tucsek Z; Gautam T; Giles CB; Wren JD; Koller A; Sonntag WE; Csiszar A; Ungvari Z
    Aging Cell; 2015 Jun; 14(3):400-8. PubMed ID: 25677910
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A navitoclax-loaded nanodevice targeting matrix metalloproteinase-3 for the selective elimination of senescent cells.
    Escriche-Navarro B; Garrido E; Sancenón F; García-Fernández A; Martínez-Máñez R
    Acta Biomater; 2024 Mar; 176():405-416. PubMed ID: 38185231
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Longitudinal detection of gait alterations associated with hypertension-induced cerebral microhemorrhages in mice: predictive role of stride length and stride time asymmetry and increased gait entropy.
    Ungvari Z; Muranyi M; Gulej R; Negri S; Nyul-Toth A; Csik B; Patai R; Conley S; Milan M; Bagwell J; O'Connor D; Tarantini A; Yabluchanskiy A; Toth P; Csiszar A; Ungvari A; Mukli P; Tarantini S
    Geroscience; 2024 Oct; 46(5):4743-4760. PubMed ID: 38914916
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Peptide-Amphiphilic Nanoassemblies as a Responsive Senolytic Navigator for Targeted Removal of Senescent Cardiomyocytes to Ameliorate Heart Failure.
    Wu Z; Zeng Y; Chen H; Xiao Z; Guo J; Abubakar MN; Shen M; Xiao H; Song X; Cai Y
    ACS Appl Mater Interfaces; 2024 Sep; 16(38):50282-50294. PubMed ID: 39268787
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Atherosclerotic burden and cerebral small vessel disease: exploring the link through microvascular aging and cerebral microhemorrhages.
    Csiszar A; Ungvari A; Patai R; Gulej R; Yabluchanskiy A; Benyo Z; Kovacs I; Sotonyi P; Kirkpartrick AC; Prodan CI; Liotta EM; Zhang XA; Toth P; Tarantini S; Sorond FA; Ungvari Z
    Geroscience; 2024 Oct; 46(5):5103-5132. PubMed ID: 38639833
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Navitoclax (ABT263) reduces inflammation and promotes chondrogenic phenotype by clearing senescent osteoarthritic chondrocytes in osteoarthritis.
    Yang H; Chen C; Chen H; Duan X; Li J; Zhou Y; Zeng W; Yang L
    Aging (Albany NY); 2020 Jul; 12(13):12750-12770. PubMed ID: 32611834
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Accelerated cerebromicrovascular senescence contributes to cognitive decline in a mouse model of paclitaxel (Taxol)-induced chemobrain.
    Ahire C; Nyul-Toth A; DelFavero J; Gulej R; Faakye JA; Tarantini S; Kiss T; Kuan-Celarier A; Balasubramanian P; Ungvari A; Tarantini A; Nagaraja R; Yan F; Tang Q; Mukli P; Csipo T; Yabluchanskiy A; Campisi J; Ungvari Z; Csiszar A
    Aging Cell; 2023 Jul; 22(7):e13832. PubMed ID: 37243381
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Cerebral venous congestion exacerbates cerebral microhemorrhages in mice.
    Nyul-Toth A; Fulop GA; Tarantini S; Kiss T; Ahire C; Faakye JA; Ungvari A; Toth P; Toth A; Csiszar A; Ungvari Z
    Geroscience; 2022 Apr; 44(2):805-816. PubMed ID: 34989944
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Increases in hypertension-induced cerebral microhemorrhages exacerbate gait dysfunction in a mouse model of Alzheimer's disease.
    Nyúl-Tóth Á; Tarantini S; Kiss T; Toth P; Galvan V; Tarantini A; Yabluchanskiy A; Csiszar A; Ungvari Z
    Geroscience; 2020 Dec; 42(6):1685-1698. PubMed ID: 32844283
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Imaging the time course, morphology, neuronal tissue compression, and resolution of cerebral microhemorrhages in mice using intravital two-photon microscopy: insights into arteriolar, capillary, and venular origin.
    Faakye J; Nyúl-Tóth Á; Gulej R; Csik B; Tarantini S; Shanmugarama S; Prodan C; Mukli P; Yabluchanskiy A; Conley S; Toth P; Csiszar A; Ungvari Z
    Geroscience; 2023 Oct; 45(5):2851-2872. PubMed ID: 37338779
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Eliminating Senescent Cells Can Promote Pulmonary Hypertension Development and Progression.
    Born E; Lipskaia L; Breau M; Houssaini A; Beaulieu D; Marcos E; Pierre R; Do Cruzeiro M; Lefevre M; Derumeaux G; Bulavin DV; Delcroix M; Quarck R; Reen V; Gil J; Bernard D; Flaman JM; Adnot S; Abid S
    Circulation; 2023 Feb; 147(8):650-666. PubMed ID: 36515093
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The vasoprotective role of IGF-1 signaling in the cerebral microcirculation: prevention of cerebral microhemorrhages in aging.
    Stankovics L; Ungvari A; Fekete M; Nyul-Toth A; Mukli P; Patai R; Csik B; Gulej R; Conley S; Csiszar A; Toth P
    Geroscience; 2024 Sep; ():. PubMed ID: 39271571
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Primary oocytes with cellular senescence features are involved in ovarian aging in mice.
    Yan H; Miranda EAD; Jin S; Wilson F; An K; Godbee B; Zheng X; Brau-Rodríguez AR; Lei L
    Sci Rep; 2024 Jun; 14(1):13606. PubMed ID: 38871781
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Short senolytic or senostatic interventions rescue progression of radiation-induced frailty and premature ageing in mice.
    Fielder E; Wan T; Alimohammadiha G; Ishaq A; Low E; Weigand BM; Kelly G; Parker C; Griffin B; Jurk D; Korolchuk VI; von Zglinicki T; Miwa S
    Elife; 2022 May; 11():. PubMed ID: 35507395
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.