BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

194 related articles for article (PubMed ID: 38044466)

  • 1. A lateralized alpha-band marker of the interference of exogenous attention over endogenous attention.
    Landry M; da Silva Castanheira J; Raz A; Baillet S; Sackur J
    Cereb Cortex; 2024 Jan; 34(1):. PubMed ID: 38044466
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Lateralized alpha activity and slow potential shifts over visual cortex track the time course of both endogenous and exogenous orienting of attention.
    Keefe JM; Störmer VS
    Neuroimage; 2021 Jan; 225():117495. PubMed ID: 33184032
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Neural mechanisms mediating contingent capture of attention by affective stimuli.
    Reeck C; LaBar KS; Egner T
    J Cogn Neurosci; 2012 May; 24(5):1113-26. PubMed ID: 22360642
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Two cognitive and neural systems for endogenous and exogenous spatial attention.
    Chica AB; Bartolomeo P; Lupiáñez J
    Behav Brain Res; 2013 Jan; 237():107-23. PubMed ID: 23000534
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Interactions between voluntary and stimulus-driven spatial attention mechanisms across sensory modalities.
    Santangelo V; Olivetti Belardinelli M; Spence C; Macaluso E
    J Cogn Neurosci; 2009 Dec; 21(12):2384-97. PubMed ID: 19199406
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Individual Alpha Peak Frequency Predicts 10 Hz Flicker Effects on Selective Attention.
    Gulbinaite R; van Viegen T; Wieling M; Cohen MX; VanRullen R
    J Neurosci; 2017 Oct; 37(42):10173-10184. PubMed ID: 28931569
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Differential and Overlapping Effects between Exogenous and Endogenous Attention Shape Perceptual Facilitation during Visual Processing.
    Landry M; da Silva Castanheira J; Jerbi K
    J Cogn Neurosci; 2023 Aug; 35(8):1279-1300. PubMed ID: 37262361
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Parietal but not temporoparietal alpha-tACS modulates endogenous visuospatial attention.
    Kemmerer SK; de Graaf TA; Ten Oever S; Erkens M; De Weerd P; Sack AT
    Cortex; 2022 Sep; 154():149-166. PubMed ID: 35779382
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Both dorsal and ventral attention network nodes are implicated in exogenously driven visuospatial anticipation.
    Ahrens MM; Veniero D; Freund IM; Harvey M; Thut G
    Cortex; 2019 Aug; 117():168-181. PubMed ID: 30981955
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Neuroanatomical dissociation between bottom-up and top-down processes of visuospatial selective attention.
    Hahn B; Ross TJ; Stein EA
    Neuroimage; 2006 Aug; 32(2):842-53. PubMed ID: 16757180
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Suppression of alpha-band power underlies exogenous attention to emotional distractors.
    Arana L; Melcón M; Kessel D; Hoyos S; Albert J; Carretié L; Capilla A
    Psychophysiology; 2022 Sep; 59(9):e14051. PubMed ID: 35318692
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effect of working memory load on electrophysiological markers of visuospatial orienting in a spatial cueing task simulating a traffic situation.
    Vossen AY; Ross V; Jongen EM; Ruiter RA; Smulders FT
    Psychophysiology; 2016 Feb; 53(2):237-51. PubMed ID: 26524126
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Top-down controlled alpha band activity in somatosensory areas determines behavioral performance in a discrimination task.
    Haegens S; Händel BF; Jensen O
    J Neurosci; 2011 Apr; 31(14):5197-204. PubMed ID: 21471354
    [TBL] [Abstract][Full Text] [Related]  

  • 14. An EEG study of the combined effects of top-down and bottom-up attentional selection under varying task difficulty.
    Rashal E; Senoussi M; Santandrea E; Ben-Hamed S; Macaluso E; Chelazzi L; Boehler CN
    Psychophysiology; 2022 Jun; 59(6):e14002. PubMed ID: 35060631
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Age-associated modulations of cerebral oscillatory patterns related to attention control.
    Deiber MP; Ibañez V; Missonnier P; Rodriguez C; Giannakopoulos P
    Neuroimage; 2013 Nov; 82():531-46. PubMed ID: 23777759
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Involuntary attentional capture is determined by task set: evidence from event-related brain potentials.
    Eimer M; Kiss M
    J Cogn Neurosci; 2008 Aug; 20(8):1423-33. PubMed ID: 18303979
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Top-down and bottom-up attentional guidance: investigating the role of the dorsal and ventral parietal cortices.
    Shomstein S; Lee J; Behrmann M
    Exp Brain Res; 2010 Oct; 206(2):197-208. PubMed ID: 20571784
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Oscillatory alpha-band mechanisms and the deployment of spatial attention to anticipated auditory and visual target locations: supramodal or sensory-specific control mechanisms?
    Banerjee S; Snyder AC; Molholm S; Foxe JJ
    J Neurosci; 2011 Jul; 31(27):9923-32. PubMed ID: 21734284
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Hemisphere-specific, differential effects of lateralized, occipital-parietal α- versus γ-tACS on endogenous but not exogenous visual-spatial attention.
    Kasten FH; Wendeln T; Stecher HI; Herrmann CS
    Sci Rep; 2020 Jul; 10(1):12270. PubMed ID: 32703961
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Prism Adaptation Alters Electrophysiological Markers of Attentional Processes in the Healthy Brain.
    Martín-Arévalo E; Laube I; Koun E; Farnè A; Reilly KT; Pisella L
    J Neurosci; 2016 Jan; 36(3):1019-30. PubMed ID: 26791229
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.