BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

332 related articles for article (PubMed ID: 38044595)

  • 21. Learning from nature - novel synthetic biology approaches for biomaterial design.
    Bryksin AV; Brown AC; Baksh MM; Finn MG; Barker TH
    Acta Biomater; 2014 Apr; 10(4):1761-9. PubMed ID: 24463066
    [TBL] [Abstract][Full Text] [Related]  

  • 22. RNA origami design tools enable cotranscriptional folding of kilobase-sized nanoscaffolds.
    Geary C; Grossi G; McRae EKS; Rothemund PWK; Andersen ES
    Nat Chem; 2021 Jun; 13(6):549-558. PubMed ID: 33972754
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Enabling technology and core theory of synthetic biology.
    Zhang XE; Liu C; Dai J; Yuan Y; Gao C; Feng Y; Wu B; Wei P; You C; Wang X; Si T
    Sci China Life Sci; 2023 Aug; 66(8):1742-1785. PubMed ID: 36753021
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Phage-Based Applications in Synthetic Biology.
    Lemire S; Yehl KM; Lu TK
    Annu Rev Virol; 2018 Sep; 5(1):453-476. PubMed ID: 30001182
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Aptamers, Riboswitches, and Ribozymes in
    Ge H; Marchisio MA
    Life (Basel); 2021 Mar; 11(3):. PubMed ID: 33802772
    [TBL] [Abstract][Full Text] [Related]  

  • 26. High-Throughput Analysis and Engineering of Ribozymes and Deoxyribozymes by Sequencing.
    Yokobayashi Y
    Acc Chem Res; 2020 Dec; 53(12):2903-2912. PubMed ID: 33164502
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Bottom-up approaches in synthetic biology and biomaterials for tissue engineering applications.
    Weisenberger MS; Deans TL
    J Ind Microbiol Biotechnol; 2018 Jul; 45(7):599-614. PubMed ID: 29552703
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Engineering Hydrogel Production in Mammalian Cells to Synthetically Mimic RNA Granules.
    Nakamura H
    Methods Mol Biol; 2021; 2312():253-276. PubMed ID: 34228295
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Synthetic biology for plant genetic engineering and molecular farming.
    Wang Y; Demirer GS
    Trends Biotechnol; 2023 Sep; 41(9):1182-1198. PubMed ID: 37012119
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Engineered riboswitches: Expanding researchers' toolbox with synthetic RNA regulators.
    Wittmann A; Suess B
    FEBS Lett; 2012 Jul; 586(15):2076-83. PubMed ID: 22710175
    [TBL] [Abstract][Full Text] [Related]  

  • 31. The roles of structural dynamics in the cellular functions of RNAs.
    Ganser LR; Kelly ML; Herschlag D; Al-Hashimi HM
    Nat Rev Mol Cell Biol; 2019 Aug; 20(8):474-489. PubMed ID: 31182864
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Computational design of nucleic acid feedback control circuits.
    Yordanov B; Kim J; Petersen RL; Shudy A; Kulkarni VV; Phillips A
    ACS Synth Biol; 2014 Aug; 3(8):600-16. PubMed ID: 25061797
    [TBL] [Abstract][Full Text] [Related]  

  • 33. New Applications of Synthetic Biology Tools for Cyanobacterial Metabolic Engineering.
    Santos-Merino M; Singh AK; Ducat DC
    Front Bioeng Biotechnol; 2019; 7():33. PubMed ID: 30873404
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Designing RNA switches for synthetic biology using inverse-RNA-folding.
    Mukherjee S; Barash D
    Trends Biotechnol; 2024 May; 42(5):517-521. PubMed ID: 38040620
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Complete RNA inverse folding: computational design of functional hammerhead ribozymes.
    Dotu I; Garcia-Martin JA; Slinger BL; Mechery V; Meyer MM; Clote P
    Nucleic Acids Res; 2014 Oct; 42(18):11752-62. PubMed ID: 25209235
    [TBL] [Abstract][Full Text] [Related]  

  • 36. A synthetic biology approach to engineering circuits in immune cells.
    Hoces D; Miguens Blanco J; Hernández-López RA
    Immunol Rev; 2023 Nov; 320(1):120-137. PubMed ID: 37464881
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Putting RNA to work: Translating RNA fundamentals into biotechnological engineering practice.
    Peters G; Coussement P; Maertens J; Lammertyn J; De Mey M
    Biotechnol Adv; 2015 Dec; 33(8):1829-44. PubMed ID: 26514597
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Engineered Protease-Responsive RNA-Binding Proteins (RBPs) to Expand the Toolbox of Synthetic Circuits in Mammalian Cells.
    Calandra F; Siciliano V
    Methods Mol Biol; 2024; 2774():59-69. PubMed ID: 38441758
    [TBL] [Abstract][Full Text] [Related]  

  • 39. In vivo screening of ligand-dependent hammerhead ribozymes.
    Saragliadis A; Klauser B; Hartig JS
    Methods Mol Biol; 2012; 848():455-63. PubMed ID: 22315086
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Engineering the Translational Machinery for Biotechnology Applications.
    Wang T; Liang C; An Y; Xiao S; Xu H; Zheng M; Liu L; Wang G; Nie L
    Mol Biotechnol; 2020 Apr; 62(4):219-227. PubMed ID: 32103426
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 17.