These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

114 related articles for article (PubMed ID: 38044706)

  • 1. Long-term vinasse application enhanced the initial dissipation of atrazine and ametryn in a sugarcane field in Tucumán, Argentina.
    Portocarrero RLÁ; Chalco Vera J; Vallejo JI; De Gerónimo E; Costa JL; Aparicio VC
    Integr Environ Assess Manag; 2024 Jul; 20(4):1075-1086. PubMed ID: 38044706
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Sorption of acetochlor, S-metolachlor, and atrazine in surface and subsurface soil horizons of Argentina.
    Bedmar F; Daniel PE; Costa JL; Giménez D
    Environ Toxicol Chem; 2011 Sep; 30(9):1990-6. PubMed ID: 21692102
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Determination of ametryn in sugarcane and ametryn-atrazine herbicide formulations using spectrophotometric method.
    Shah J; Jan MR; Ara B; Shehzad FU
    Environ Monit Assess; 2012 Jun; 184(6):3463-8. PubMed ID: 21713463
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Persistence of acetochlor, atrazine, and S-metolachlor in surface and subsurface horizons of 2 typic argiudolls under no-tillage.
    Bedmar F; Gimenez D; Costa JL; Daniel PE
    Environ Toxicol Chem; 2017 Nov; 36(11):3065-3073. PubMed ID: 28577318
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Dissipation of three s-triazine herbicides, atrazine, simazine, and ametryn, in subtropical soils.
    Wang YS; Duh JR; Liang YF; Chen YL
    Bull Environ Contam Toxicol; 1995 Sep; 55(3):351-8. PubMed ID: 8520140
    [No Abstract]   [Full Text] [Related]  

  • 6. Spatial variability of atrazine and metolachlor dissipation on dryland no-tillage crop fields in Colorado.
    Bridges M; Henry WB; Shaner DL; Khosla R; Westra P; Reich R
    J Environ Qual; 2008; 37(6):2212-20. PubMed ID: 18948474
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Atrazine leaching from biochar-amended soils.
    Delwiche KB; Lehmann J; Walter MT
    Chemosphere; 2014 Jan; 95():346-52. PubMed ID: 24129000
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Biochar decreases dissolved organic carbon but not nitrate leaching in relation to vinasse application in a Brazilian sugarcane soil.
    Eykelbosh AJ; Johnson MS; Couto EG
    J Environ Manage; 2015 Feb; 149():9-16. PubMed ID: 25463566
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Sorption of atrazine and ametryn by carbonatic and non-carbonatic soils of varied origin.
    Kasozi GN; Nkedi-Kizza P; Li Y; Zimmerman AR
    Environ Pollut; 2012 Oct; 169():12-9. PubMed ID: 22659728
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Microchip capillary electrophoresis based electroanalysis of triazine herbicides.
    Islam K; Chand R; Han D; Kim YS
    Bull Environ Contam Toxicol; 2015 Jan; 94(1):41-5. PubMed ID: 25231112
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Spatial variability in 14C-herbicide degradation in surface and subsurface soils.
    Charnay MP; Tuis S; Coquet Y; Barriuso E
    Pest Manag Sci; 2005 Sep; 61(9):845-55. PubMed ID: 16003827
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Retention and runoff losses of atrazine and metribuzin in soil.
    Selim HM
    J Environ Qual; 2003; 32(3):1058-71. PubMed ID: 12809307
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Influence of sugar cane vinasse on the sorption and degradation of herbicides in soil under controlled conditions.
    Lourencetti C; De Marchi MR; Ribeiro ML
    J Environ Sci Health B; 2012; 47(10):949-58. PubMed ID: 22938579
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Pesticide storage and release in unsaturated soil in Illinois, USA.
    Roy WR; Krapac IG; Chou SF; Simmons FW
    J Environ Sci Health B; 2001 May; 36(3):245-60. PubMed ID: 11411849
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Interactions of sodium azide with triazine herbicides: effect on sorption to soils.
    Chefetz B; Stimler K; Shechter M; Drori Y
    Chemosphere; 2006 Oct; 65(2):352-7. PubMed ID: 16630643
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Fate of atrazine in a soil under different agronomic management practices.
    Prado B; Fuentes M; Verhulst N; Govaerts B; De León F; Zamora O
    J Environ Sci Health B; 2014; 49(11):844-55. PubMed ID: 25190559
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Atrazine and metribuzin sorption in soils of the Argentinean humid pampas.
    Daniel PE; Bedmar F; Costa JL; Aparicio VC
    Environ Toxicol Chem; 2002 Dec; 21(12):2567-72. PubMed ID: 12463550
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Atrazine sorption and fate in a Ultisol from humid tropical Brazil.
    Correia FV; Macrae A; Guilherme LR; Langenbach T
    Chemosphere; 2007 Mar; 67(5):847-54. PubMed ID: 17223180
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Microbial changes linked to the accelerated degradation of the herbicide atrazine in a range of temperate soils.
    Yale RL; Sapp M; Sinclair CJ; Moir JW
    Environ Sci Pollut Res Int; 2017 Mar; 24(8):7359-7374. PubMed ID: 28108915
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Optimization of typical diffuse herbicide pollution control by soil amendment configurations under four levels of rainfall intensities.
    Ouyang W; Huang W; Wei P; Hao F; Yu Y
    J Environ Manage; 2016 Jun; 175():1-8. PubMed ID: 27017267
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.