These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

81 related articles for article (PubMed ID: 3804474)

  • 1. A validation study of a simulation model for common source epidemics.
    Shonkwiler R; Thompson M
    Int J Biomed Comput; 1986 Nov; 19(3-4):175-94. PubMed ID: 3804474
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Common source epidemics II: toxoplasmosis in Atlanta.
    Shonkwiler R; Thompson M
    Bull Math Biol; 1982; 44(3):377-98. PubMed ID: 7104510
    [No Abstract]   [Full Text] [Related]  

  • 3. Common source epidemics I: a stochastic model.
    Shonkwiler R; Thompson M
    Bull Math Biol; 1982; 44(2):259-69. PubMed ID: 7074251
    [No Abstract]   [Full Text] [Related]  

  • 4. Control fast or control smart: When should invading pathogens be controlled?
    Thompson RN; Gilligan CA; Cunniffe NJ
    PLoS Comput Biol; 2018 Feb; 14(2):e1006014. PubMed ID: 29451878
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Influential disease foci in epidemics and underlying mechanisms: a field experiment and simulations.
    Estep LK; Sackett KE; Mundt CC
    Ecol Appl; 2014; 24(7):1854-62. PubMed ID: 29210243
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effects of pathogen dependency in a multi-pathogen infectious disease system including population level heterogeneity - a simulation study.
    Bakuli A; Klawonn F; Karch A; Mikolajczyk R
    Theor Biol Med Model; 2017 Dec; 14(1):26. PubMed ID: 29237462
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Stochastic Periodic Solution of a Susceptible-Infective Epidemic Model in a Polluted Environment under Environmental Fluctuation.
    Zhao Y; Li J; Ma X
    Comput Math Methods Med; 2018; 2018():7360685. PubMed ID: 29853987
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A note on epidemics in heterogeneous populations.
    Boylan RD
    Math Biosci; 1991 Jun; 105(1):133-7. PubMed ID: 1806093
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Network inoculation: Heteroclinics and phase transitions in an epidemic model.
    Yang H; Rogers T; Gross T
    Chaos; 2016 Aug; 26(8):083116. PubMed ID: 27586612
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A model of spatial epidemic spread when individuals move within overlapping home ranges.
    Reluga TC; Medlock J; Galvani AP
    Bull Math Biol; 2006 Feb; 68(2):401-16. PubMed ID: 16794937
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Computer-generated dot maps as an epidemiologic tool: investigating an outbreak of toxoplasmosis.
    Eng SB; Werker DH; King AS; Marion SA; Bell A; Issac-Renton JL; Irwin GS; Bowie WR
    Emerg Infect Dis; 1999; 5(6):815-9. PubMed ID: 10603218
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A simulation model of the epidemiology of urban dengue fever: literature analysis, model development, preliminary validation, and samples of simulation results.
    Focks DA; Daniels E; Haile DG; Keesling JE
    Am J Trop Med Hyg; 1995 Nov; 53(5):489-506. PubMed ID: 7485707
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Susceptible-infected-recovered epidemics in dynamic contact networks.
    Volz E; Meyers LA
    Proc Biol Sci; 2007 Dec; 274(1628):2925-33. PubMed ID: 17878137
    [TBL] [Abstract][Full Text] [Related]  

  • 14. [Mathematic model and prognosis of the course of tardive epidemics--studies with the object of further completion of anti-epidemic guarantee].
    Schumann H
    Z Gesamte Hyg; 1987 Nov; 33(11):603-4. PubMed ID: 3439241
    [No Abstract]   [Full Text] [Related]  

  • 15. A microcomputer method for continuous system simulation in health care.
    Bozikov J; Dezelić G
    Comput Methods Programs Biomed; 1991 Jan; 34(1):17-25. PubMed ID: 2036786
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Estimation of vaccine efficacy in outbreaks of acute infectious diseases.
    Haber M; Longini IM; Halloran ME
    Stat Med; 1991 Oct; 10(10):1573-84. PubMed ID: 1947513
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Computer analysis of the shape of spread of epidemics on a grid.
    Lloyd M
    Math Biosci; 1991 Dec; 107(2):289-97. PubMed ID: 1806119
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Spatially-implicit modelling of disease-behaviour interactions in the context of non-pharmaceutical interventions.
    Ringa N; Bauch CT
    Math Biosci Eng; 2018 Apr; 15(2):461-483. PubMed ID: 29161845
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Monte Carlo simulation of classical swine fever epidemics and control. II. Validation of the model.
    Karsten S; Rave G; Krieter J
    Vet Microbiol; 2005 Jul; 108(3-4):199-205. PubMed ID: 15939558
    [TBL] [Abstract][Full Text] [Related]  

  • 20. CASE: a framework for computer supported outbreak detection.
    Cakici B; Hebing K; Grünewald M; Saretok P; Hulth A
    BMC Med Inform Decis Mak; 2010 Mar; 10():14. PubMed ID: 20226035
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.