These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

140 related articles for article (PubMed ID: 38045314)

  • 1. Automatic renal carcinoma biopsy guidance using forward-viewing endoscopic optical coherence tomography and deep learning.
    Tang Q; Wang C; Cui H; Zhang Q; Calle P; Yan Y; Yan F; Fung KM; Patel S; Yu Z; Duguay S; Vanlandingham W; Pan C
    Res Sq; 2023 Nov; ():. PubMed ID: 38045314
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Automatic renal carcinoma biopsy guidance using forward-viewing endoscopic optical coherence tomography and deep learning.
    Wang C; Cui H; Zhang Q; Calle P; Yan Y; Yan F; Fung KM; Patel SG; Yu Z; Duguay S; Vanlandingham W; Jain A; Pan C; Tang Q
    Commun Eng; 2024 Aug; 3(1):107. PubMed ID: 39095532
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Deep-learning-aided forward optical coherence tomography endoscope for percutaneous nephrostomy guidance.
    Wang C; Calle P; Tran Ton NB; Zhang Z; Yan F; Donaldson AM; Bradley NA; Yu Z; Fung KM; Pan C; Tang Q
    Biomed Opt Express; 2021 Apr; 12(4):2404-2418. PubMed ID: 33996237
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Enhancing epidural needle guidance using a polarization-sensitive optical coherence tomography probe with convolutional neural networks.
    Wang C; Liu Y; Calle P; Li X; Liu R; Zhang Q; Yan F; Fung KM; Conner AK; Chen S; Pan C; Tang Q
    J Biophotonics; 2024 Feb; 17(2):e202300330. PubMed ID: 37833242
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Polarization-sensitive optical coherence tomography for renal tumor detection in
    Yan F; Wang C; Yan Y; Zhang Q; Yu Z; Patel SG; Fung KM; Tang Q
    Opt Lasers Eng; 2024 Feb; 173():. PubMed ID: 37982078
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Computer-aided Veress needle guidance using endoscopic optical coherence tomography and convolutional neural networks.
    Wang C; Reynolds JC; Calle P; Ladymon AD; Yan F; Yan Y; Ton S; Fung KM; Patel SG; Yu Z; Pan C; Tang Q
    J Biophotonics; 2022 May; 15(5):e202100347. PubMed ID: 35103420
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Human colorectal cancer tissue assessment using optical coherence tomography catheter and deep learning.
    Luo H; Li S; Zeng Y; Cheema H; Otegbeye E; Ahmed S; Chapman WC; Mutch M; Zhou C; Zhu Q
    J Biophotonics; 2022 Jun; 15(6):e202100349. PubMed ID: 35150067
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Deep-Learning-Based Automated Identification and Visualization of Oral Cancer in Optical Coherence Tomography Images.
    Yang Z; Pan H; Shang J; Zhang J; Liang Y
    Biomedicines; 2023 Mar; 11(3):. PubMed ID: 36979780
    [TBL] [Abstract][Full Text] [Related]  

  • 9. An In-vivo Prospective Study of the Diagnostic Yield and Accuracy of Optical Biopsy Compared with Conventional Renal Mass Biopsy for the Diagnosis of Renal Cell Carcinoma: The Interim Analysis.
    Buijs M; Wagstaff PGK; de Bruin DM; Zondervan PJ; Savci-Heijink CD; van Delden OM; van Leeuwen TG; van Moorselaar RJA; de la Rosette JJMCH; Laguna Pes MP
    Eur Urol Focus; 2018 Dec; 4(6):978-985. PubMed ID: 29079496
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Feasibility of optical coherence tomography imaging to characterize renal neoplasms: limitations in resolution and depth of penetration.
    Linehan JA; Bracamonte ER; Hariri LP; Sokoloff MH; Rice PS; Barton JK; Nguyen MM
    BJU Int; 2011 Dec; 108(11):1820-4. PubMed ID: 21592299
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Visualization and tissue classification of human breast cancer images using ultrahigh-resolution OCT.
    Yao X; Gan Y; Chang E; Hibshoosh H; Feldman S; Hendon C
    Lasers Surg Med; 2017 Mar; 49(3):258-269. PubMed ID: 28264146
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Passively scanned, single-fiber optical coherence tomography probes for gastrointestinal devices.
    Otuya DO; Dechene NM; Poshtupaka D; Judson S; Carlson CJ; Zemlok SK; Sevieri E; Choy P; Shore RE; De León-Peralta E; Cirio AA; Rihm TW; Krall AA; Gavgiotaki E; Dong J; Silva SL; Baillargeon A; Baldwin G; Gao AH; Jansa Z; Barrios A; Ryan E; Bhat NGM; Balmasheva I; Chung A; Grant CN; Bablouzian AL; Beatty M; Ahsen OO; Zheng H; Tearney GJ
    Lasers Surg Med; 2022 Sep; 54(7):935-944. PubMed ID: 35708124
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Diseased thyroid tissue classification in OCT images using deep learning: Towards surgical decision support.
    Tampu IE; Eklund A; Johansson K; Gimm O; Haj-Hosseini N
    J Biophotonics; 2023 Feb; 16(2):e202200227. PubMed ID: 36203247
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Single fiber OCT imager for breast tissue classification based on deep learning.
    Liu Y; Hubbi B; Liu X
    Proc SPIE Int Soc Opt Eng; 2020 Feb; 11233():. PubMed ID: 32665745
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Classification of pachychoroid on optical coherence tomography using deep learning.
    Kang NY; Ra H; Lee K; Lee JH; Lee WK; Baek J
    Graefes Arch Clin Exp Ophthalmol; 2021 Jul; 259(7):1803-1809. PubMed ID: 33616757
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Automated classification of normal and Stargardt disease optical coherence tomography images using deep learning.
    Shah M; Roomans Ledo A; Rittscher J
    Acta Ophthalmol; 2020 Sep; 98(6):e715-e721. PubMed ID: 31981283
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Automatic diagnosis of macular diseases from OCT volume based on its two-dimensional feature map and convolutional neural network with attention mechanism.
    Sun Y; Zhang H; Yao X
    J Biomed Opt; 2020 Sep; 25(9):. PubMed ID: 32940026
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A new intelligent system based deep learning to detect DME and AMD in OCT images.
    Gueddena Y; Aboudi N; Zgolli H; Mabrouk S; Sidibe D; Tabia H; Khlifa N
    Int Ophthalmol; 2024 Apr; 44(1):191. PubMed ID: 38653842
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Optical coherence tomography and convolutional neural networks can differentiate colorectal liver metastases from liver parenchyma ex vivo.
    Amygdalos I; Hachgenei E; Burkl L; Vargas D; Goßmann P; Wolff LI; Druzenko M; Frye M; König N; Schmitt RH; Chrysos A; Jöchle K; Ulmer TF; Lambertz A; Knüchel-Clarke R; Neumann UP; Lang SA
    J Cancer Res Clin Oncol; 2023 Jul; 149(7):3575-3586. PubMed ID: 35960377
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Multi-class classification of breast tissue using optical coherence tomography and attenuation imaging combined via deep learning.
    Foo KY; Newman K; Fang Q; Gong P; Ismail HM; Lakhiani DD; Zilkens R; Dessauvagie BF; Latham B; Saunders CM; Chin L; Kennedy BF
    Biomed Opt Express; 2022 Jun; 13(6):3380-3400. PubMed ID: 35781967
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.