BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

189 related articles for article (PubMed ID: 38045326)

  • 1. Reactive Oxygen Species Generation by Reverse Electron Transfer at Mitochondrial Complex I Under Simulated Early Reperfusion Conditions.
    Fukushima CT; Dancil IS; Clary H; Shah N; Nadtochiy SM; Brookes PS
    bioRxiv; 2023 Nov; ():. PubMed ID: 38045326
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Reactive oxygen species generation by reverse electron transfer at mitochondrial complex I under simulated early reperfusion conditions.
    Tabata Fukushima C; Dancil IS; Clary H; Shah N; Nadtochiy SM; Brookes PS
    Redox Biol; 2024 Apr; 70():103047. PubMed ID: 38295577
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Acid enhancement of ROS generation by complex-I reverse electron transport is balanced by acid inhibition of complex-II: Relevance for tissue reperfusion injury.
    Milliken AS; Kulkarni CA; Brookes PS
    Redox Biol; 2020 Oct; 37():101733. PubMed ID: 33007502
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Reactive oxygen species production induced by pore opening in cardiac mitochondria: The role of complex III.
    Korge P; Calmettes G; John SA; Weiss JN
    J Biol Chem; 2017 Jun; 292(24):9882-9895. PubMed ID: 28450391
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Reactive oxygen species production induced by pore opening in cardiac mitochondria: The role of complex II.
    Korge P; John SA; Calmettes G; Weiss JN
    J Biol Chem; 2017 Jun; 292(24):9896-9905. PubMed ID: 28450394
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Inhibiting Succinate Release Worsens Cardiac Reperfusion Injury by Enhancing Mitochondrial Reactive Oxygen Species Generation.
    Milliken AS; Nadtochiy SM; Brookes PS
    J Am Heart Assoc; 2022 Jul; 11(13):e026135. PubMed ID: 35766275
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Q-site inhibitor induced ROS production of mitochondrial complex II is attenuated by TCA cycle dicarboxylates.
    Siebels I; Dröse S
    Biochim Biophys Acta; 2013 Oct; 1827(10):1156-64. PubMed ID: 23800966
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Ischaemic accumulation of succinate controls reperfusion injury through mitochondrial ROS.
    Chouchani ET; Pell VR; Gaude E; Aksentijević D; Sundier SY; Robb EL; Logan A; Nadtochiy SM; Ord ENJ; Smith AC; Eyassu F; Shirley R; Hu CH; Dare AJ; James AM; Rogatti S; Hartley RC; Eaton S; Costa ASH; Brookes PS; Davidson SM; Duchen MR; Saeb-Parsy K; Shattock MJ; Robinson AJ; Work LM; Frezza C; Krieg T; Murphy MP
    Nature; 2014 Nov; 515(7527):431-435. PubMed ID: 25383517
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The dependence of brain mitochondria reactive oxygen species production on oxygen level is linear, except when inhibited by antimycin A.
    Stepanova A; Konrad C; Manfredi G; Springett R; Ten V; Galkin A
    J Neurochem; 2019 Mar; 148(6):731-745. PubMed ID: 30582748
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Increased Succinate Accumulation Induces ROS Generation in
    Kamarauskaite J; Baniene R; Trumbeckas D; Strazdauskas A; Trumbeckaite S
    Biomed Res Int; 2020; 2020():8855585. PubMed ID: 33102598
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Physiologic Implications of Reactive Oxygen Species Production by Mitochondrial Complex I Reverse Electron Transport.
    Onukwufor JO; Berry BJ; Wojtovich AP
    Antioxidants (Basel); 2019 Aug; 8(8):. PubMed ID: 31390791
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Reverse Electron Transport at Mitochondrial Complex I in Ischemic Stroke, Aging, and Age-Related Diseases.
    Chavda V; Lu B
    Antioxidants (Basel); 2023 Apr; 12(4):. PubMed ID: 37107270
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Isoflurane differentially modulates mitochondrial reactive oxygen species production via forward versus reverse electron transport flow: implications for preconditioning.
    Hirata N; Shim YH; Pravdic D; Lohr NL; Pratt PF; Weihrauch D; Kersten JR; Warltier DC; Bosnjak ZJ; Bienengraeber M
    Anesthesiology; 2011 Sep; 115(3):531-40. PubMed ID: 21862887
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Reverse electron transfer results in a loss of flavin from mitochondrial complex I: Potential mechanism for brain ischemia reperfusion injury.
    Stepanova A; Kahl A; Konrad C; Ten V; Starkov AS; Galkin A
    J Cereb Blood Flow Metab; 2017 Dec; 37(12):3649-3658. PubMed ID: 28914132
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Differential effects of buffer pH on Ca(2+)-induced ROS emission with inhibited mitochondrial complexes I and III.
    Lindsay DP; Camara AK; Stowe DF; Lubbe R; Aldakkak M
    Front Physiol; 2015; 6():58. PubMed ID: 25805998
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Ischemic preconditioning protects against cardiac ischemia reperfusion injury without affecting succinate accumulation or oxidation.
    Pell VR; Spiroski AM; Mulvey J; Burger N; Costa ASH; Logan A; Gruszczyk AV; Rosa T; James AM; Frezza C; Murphy MP; Krieg T
    J Mol Cell Cardiol; 2018 Oct; 123():88-91. PubMed ID: 30118790
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Mitochondrial integrity during early reperfusion in an isolated rat heart model of donation after circulatory death-consequences of ischemic duration.
    Wyss RK; Méndez-Carmona N; Sanz MN; Arnold M; Segiser A; Fiedler GM; Carrel TP; Djafarzadeh S; Tevaearai Stahel HT; Longnus SL
    J Heart Lung Transplant; 2019 Jun; 38(6):647-657. PubMed ID: 30655178
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Reactive oxygen species are generated by the respiratory complex II--evidence for lack of contribution of the reverse electron flow in complex I.
    Moreno-Sánchez R; Hernández-Esquivel L; Rivero-Segura NA; Marín-Hernández A; Neuzil J; Ralph SJ; Rodríguez-Enríquez S
    FEBS J; 2013 Feb; 280(3):927-38. PubMed ID: 23206332
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Reverse and Forward Electron Flow-Induced H
    Horváth G; Sváb G; Komlódi T; Ravasz D; Kacsó G; Doczi J; Chinopoulos C; Ambrus A; Tretter L
    Antioxidants (Basel); 2022 Jul; 11(8):. PubMed ID: 36009207
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Control of mitochondrial superoxide production by reverse electron transport at complex I.
    Robb EL; Hall AR; Prime TA; Eaton S; Szibor M; Viscomi C; James AM; Murphy MP
    J Biol Chem; 2018 Jun; 293(25):9869-9879. PubMed ID: 29743240
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.