These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

168 related articles for article (PubMed ID: 38045634)

  • 1. Data-driven Tissue Mechanics with Polyconvex Neural Ordinary Differential Equations.
    Tac V; Sahli Costabal F; Tepole AB
    Comput Methods Appl Mech Eng; 2022 Aug; 398():. PubMed ID: 38045634
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Data-driven Modeling of the Mechanical Behavior of Anisotropic Soft Biological Tissue.
    Tac V; Sree VD; Rausch MK; Tepole AB
    Eng Comput; 2022 Oct; 38(5):4167-4182. PubMed ID: 38031587
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Data-driven anisotropic finite viscoelasticity using neural ordinary differential equations.
    Taç V; Rausch M; Costabal FS; Tepole AB
    Comput Methods Appl Mech Eng; 2023 Jun; 411():. PubMed ID: 37426992
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Benchmarking physics-informed frameworks for data-driven hyperelasticity.
    Taç V; Linka K; Sahli-Costabal F; Kuhl E; Tepole AB
    Comput Mech; 2024 Jan; 73(1):49-65. PubMed ID: 38741577
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Review of Machine Learning Techniques in Soft Tissue Biomechanics and Biomaterials.
    Donmazov S; Saruhan EN; Pekkan K; Piskin S
    Cardiovasc Eng Technol; 2024 Jul; ():. PubMed ID: 38956008
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A polyconvex anisotropic strain-energy function for soft collagenous tissues.
    Itskov M; Ehret AE; Mavrilas D
    Biomech Model Mechanobiol; 2006 Mar; 5(1):17-26. PubMed ID: 16362195
    [TBL] [Abstract][Full Text] [Related]  

  • 7. HiDeNN-FEM: A seamless machine learning approach to nonlinear finite element analysis.
    Liu Y; Park C; Lu Y; Mojumder S; Liu WK; Qian D
    Comput Mech; 2023 Jul; 72(1):173-194. PubMed ID: 38107347
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Neural Network Approaches for Soft Biological Tissue and Organ Simulations.
    Sacks MS; Motiwale S; Goodbrake C; Zhang W
    J Biomech Eng; 2022 Dec; 144(12):. PubMed ID: 36193891
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Neural ordinary differential equations with irregular and noisy data.
    Goyal P; Benner P
    R Soc Open Sci; 2023 Jul; 10(7):221475. PubMed ID: 37476515
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Anisotropic damage model for collagenous tissues and its application to model fracture and needle insertion mechanics.
    Toaquiza Tubon JD; Moreno-Flores O; Sree VD; Tepole AB
    Biomech Model Mechanobiol; 2022 Dec; 21(6):1-16. PubMed ID: 36057750
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A Physics-Guided Neural Operator Learning Approach to Model Biological Tissues From Digital Image Correlation Measurements.
    You H; Zhang Q; Ross CJ; Lee CH; Hsu MC; Yu Y
    J Biomech Eng; 2022 Dec; 144(12):. PubMed ID: 36218246
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Predicting Nonlinear and Anisotropic Mechanics of Metal Rubber Using a Combination of Constitutive Modeling, Machine Learning, and Finite Element Analysis.
    Zhao Y; Yan H; Wang Y; Jiang T; Jiang H
    Materials (Basel); 2021 Sep; 14(18):. PubMed ID: 34576424
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Collocation based training of neural ordinary differential equations.
    Roesch E; Rackauckas C; Stumpf MPH
    Stat Appl Genet Mol Biol; 2021 Jul; 20(2):37-49. PubMed ID: 34237805
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Stiff neural ordinary differential equations.
    Kim S; Ji W; Deng S; Ma Y; Rackauckas C
    Chaos; 2021 Sep; 31(9):093122. PubMed ID: 34598467
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Accelerating Neural ODEs Using Model Order Reduction.
    Lehtimaki M; Paunonen L; Linne ML
    IEEE Trans Neural Netw Learn Syst; 2024 Jan; 35(1):519-531. PubMed ID: 35617183
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Data-driven reduced-order modeling of spatiotemporal chaos with neural ordinary differential equations.
    Linot AJ; Graham MD
    Chaos; 2022 Jul; 32(7):073110. PubMed ID: 35907719
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Automated model discovery for muscle using constitutive recurrent neural networks.
    Wang LM; Linka K; Kuhl E
    J Mech Behav Biomed Mater; 2023 Sep; 145():106021. PubMed ID: 37473576
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Finite element implementation of a generalized Fung-elastic constitutive model for planar soft tissues.
    Sun W; Sacks MS
    Biomech Model Mechanobiol; 2005 Nov; 4(2-3):190-9. PubMed ID: 16075264
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Deep learning-accelerated computational framework based on Physics Informed Neural Network for the solution of linear elasticity.
    Roy AM; Bose R; Sundararaghavan V; Arróyave R
    Neural Netw; 2023 May; 162():472-489. PubMed ID: 36966712
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Interpretable data-driven modeling of hyperelastic membranes.
    Salamatova V; Liogky A
    Int J Numer Method Biomed Eng; 2023 Nov; 39(11):e3757. PubMed ID: 37442788
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.