These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

117 related articles for article (PubMed ID: 38046304)

  • 1. Nucleation and Growth of GaAs on a Carbon Release Layer by Halide Vapor Phase Epitaxy.
    Roberts DM; Kim H; McClure EL; Lu K; Mangum JS; Braun AK; Ptak AJ; Schulte KL; Kim J; Simon J
    ACS Omega; 2023 Nov; 8(47):45088-45095. PubMed ID: 38046304
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Growth of long III-As NWs by hydride vapor phase epitaxy.
    Gil E; Andre Y
    Nanotechnology; 2021 Apr; 32(16):162002. PubMed ID: 33434903
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A Novel Growth Method To Improve the Quality of GaAs Nanowires Grown by Ga-Assisted Chemical Beam Epitaxy.
    García Núñez C; Braña AF; López N; García BJ
    Nano Lett; 2018 Jun; 18(6):3608-3615. PubMed ID: 29739187
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Defect seeded remote epitaxy of GaAs films on graphene.
    Zulqurnain M; Burton OJ; Al-Hada M; Goff LE; Hofmann S; Hirst LC
    Nanotechnology; 2022 Sep; 33(48):. PubMed ID: 35977453
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Vapor liquid solid-hydride vapor phase epitaxy (VLS-HVPE) growth of ultra-long defect-free GaAs nanowires: ab initio simulations supporting center nucleation.
    André Y; Lekhal K; Hoggan P; Avit G; Cadiz F; Rowe A; Paget D; Petit E; Leroux C; Trassoudaine A; Ramdani MR; Monier G; Colas D; Ajib R; Castelluci D; Gil E
    J Chem Phys; 2014 May; 140(19):194706. PubMed ID: 24852556
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Consideration of the Intricacies Inherent in Molecular Beam Epitaxy of the NaCl/GaAs System.
    May BJ; Kim JJ; Walker P; McMahon WE; Moutinho HR; Ptak AJ; Young DL
    ACS Omega; 2022 Jul; 7(28):24353-24364. PubMed ID: 35874259
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Reduced Dislocation of GaAs Layer Grown on Ge-Buffered Si (001) Substrate Using Dislocation Filter Layers for an O-Band InAs/GaAs Quantum Dot Narrow-Ridge Laser.
    Du Y; Wei W; Xu B; Wang G; Li B; Miao Y; Zhao X; Kong Z; Lin H; Yu J; Su J; Dong Y; Wang W; Ye T; Zhang J; Radamson HH
    Micromachines (Basel); 2022 Sep; 13(10):. PubMed ID: 36295932
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Multilayer-Grown Ultrathin Nanostructured GaAs Solar Cells as a Cost-Competitive Materials Platform for III-V Photovoltaics.
    Gai B; Sun Y; Lim H; Chen H; Faucher J; Lee ML; Yoon J
    ACS Nano; 2017 Jan; 11(1):992-999. PubMed ID: 28075560
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Mechanism of nucleation and critical layer formation during In/GaAs droplet epitaxy.
    Balakirev SV; Solodovnik MS; Eremenko MM; Konoplev BG; Ageev OA
    Nanotechnology; 2019 Dec; 30(50):505601. PubMed ID: 31480037
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Reduction of Defects in AlGaN Grown on Nanoscale-Patterned Sapphire Substrates by Hydride Vapor Phase Epitaxy.
    Tasi CT; Wang WK; Tsai TY; Huang SY; Horng RH; Wuu DS
    Materials (Basel); 2017 May; 10(6):. PubMed ID: 28772961
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Two-Step Growth of Epitaxial InP Layers by Metal Organic Chemical Vapor Deposition.
    Cho YD; Lee IG; Kim SW; Jun DH; Choi IH; Kwon HM; Shin CS; Park KH; Park WK; Kim DH; Ko DH
    J Nanosci Nanotechnol; 2016 May; 16(5):5168-72. PubMed ID: 27483894
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Fabrication of 2-Inch Free-Standing GaN Substrate on Sapphire With a Combined Buffer Layer by HVPE.
    Liu N; Jiang Y; Xiao J; Liang Z; Wang Q; Zhang G
    Front Chem; 2021; 9():671720. PubMed ID: 33996764
    [TBL] [Abstract][Full Text] [Related]  

  • 13. High quality N-polar GaN films grown with varied V/III ratios by metal-organic vapor phase epitaxy.
    Li C; Zhang K; Qiaoyu Zeng ; Yin X; Ge X; Wang J; Wang Q; He C; Zhao W; Chen Z
    RSC Adv; 2020 Nov; 10(70):43187-43192. PubMed ID: 35514894
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Epitaxial Halide Perovskite Lateral Double Heterostructure.
    Wang Y; Chen Z; Deschler F; Sun X; Lu TM; Wertz EA; Hu JM; Shi J
    ACS Nano; 2017 Mar; 11(3):3355-3364. PubMed ID: 28245110
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Record pure zincblende phase in GaAs nanowires down to 5 nm in radius.
    Gil E; Dubrovskii VG; Avit G; André Y; Leroux C; Lekhal K; Grecenkov J; Trassoudaine A; Castelluci D; Monier G; Ramdani RM; Robert-Goumet C; Bideux L; Harmand JC; Glas F
    Nano Lett; 2014 Jul; 14(7):3938-44. PubMed ID: 24873917
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effects of High-Temperature Growth of Dislocation Filter Layers in GaAs-on-Si.
    Kim H; Geum DM; Ko YH; Han WS
    Nanoscale Res Lett; 2022 Dec; 17(1):126. PubMed ID: 36534366
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Reduction of dislocations in α-Ga
    Son H; Choi YJ; Hong SK; Park JH; Jeon DW
    IUCrJ; 2021 May; 8(Pt 3):462-467. PubMed ID: 33953932
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Mechanism of self-assembled growth of ordered GaAs nanowire arrays by metalorganic vapor phase epitaxy on GaAs vicinal substrates.
    Mohan P; Bag R; Singh S; Kumar A; Tyagi R
    Nanotechnology; 2012 Jan; 23(2):025601. PubMed ID: 22166369
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Investigation of the Heteroepitaxial Process Optimization of Ge Layers on Si (001) by RPCVD.
    Du Y; Kong Z; Toprak MS; Wang G; Miao Y; Xu B; Yu J; Li B; Lin H; Han J; Dong Y; Wang W; Radamson HH
    Nanomaterials (Basel); 2021 Apr; 11(4):. PubMed ID: 33917367
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Low-temperature atomic layer epitaxy of AlN ultrathin films by layer-by-layer, in-situ atomic layer annealing.
    Shih HY; Lee WH; Kao WC; Chuang YC; Lin RM; Lin HC; Shiojiri M; Chen MJ
    Sci Rep; 2017 Jan; 7():39717. PubMed ID: 28045075
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.