These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

137 related articles for article (PubMed ID: 38046406)

  • 1. Responses of a common tropical epiphyte,
    Chen XZ; Hogan JA; Wang CP; Wang PL; Lin TC
    AoB Plants; 2023 Dec; 15(6):plad076. PubMed ID: 38046406
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Are vascular epiphytes nitrogen or phosphorus limited? A study of plant (15) N fractionation and foliar N : P stoichiometry with the tank bromeliad Vriesea sanguinolenta.
    Wanek W; Zotz G
    New Phytol; 2011 Oct; 192(2):462-70. PubMed ID: 21729088
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Vascular epiphyte populations with higher leaf nutrient concentrations showed weaker resilience to an extreme drought in a montane cloud forest.
    Hu T; Liu WY; Wen HD; Song L; Zhang TT; Chen Q; Liu S
    Plant Biol (Stuttg); 2023 Jan; 25(1):215-225. PubMed ID: 36208062
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Ecological facilitation between two epiphytes through drought mitigation in a subtropical rainforest.
    Jian PY; Hu FS; Wang CP; Chiang JM; Lin TC
    PLoS One; 2013; 8(5):e64599. PubMed ID: 23741346
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Development of an epiphyte indicator of nutrient enrichment: a critical evaluation of observational and experimental studies.
    Nelson WG
    Ecol Indic; 2017 Aug; 79():207-227. PubMed ID: 30220880
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Variation in cloud immersion, not precipitation, drives leaf trait plasticity and water relations in vascular epiphytes during an extreme drought.
    Ferguson BN; Gotsch SG; Williams CB; Wilson H; Barnes CN; Dawson TE; Nadkarni NM
    Am J Bot; 2022 Apr; 109(4):550-563. PubMed ID: 35244206
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Nutrient limitation of algae and macrophytes in streams: Integrating laboratory bioassays, field experiments, and field data.
    Mebane CA; Ray AM; Marcarelli AM
    PLoS One; 2021; 16(6):e0252904. PubMed ID: 34143815
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Long-term nitrogen deposition inhibits soil priming effects by enhancing phosphorus limitation in a subtropical forest.
    Wang X; Li S; Zhu B; Homyak PM; Chen G; Yao X; Wu D; Yang Z; Lyu M; Yang Y
    Glob Chang Biol; 2023 Jul; 29(14):4081-4093. PubMed ID: 37096422
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Sagebrush carbon allocation patterns and grasshopper nutrition: the influence of CO
    Johnson RH; Lincoln DE
    Oecologia; 1991 Jun; 87(1):127-134. PubMed ID: 28313362
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Adaptations of strangler figs to life in the rainforest canopy.
    Schmidt S; Tracey DP
    Funct Plant Biol; 2006 May; 33(5):465-475. PubMed ID: 32689253
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Response of plant nutrient stoichiometry to fertilization varied with plant tissues in a tropical forest.
    Mo Q; Zou B; Li Y; Chen Y; Zhang W; Mao R; Ding Y; Wang J; Lu X; Li X; Tang J; Li Z; Wang F
    Sci Rep; 2015 Sep; 5():14605. PubMed ID: 26416169
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Adaptive plasticity and fitness costs of endangered, nonendangered, and invasive plants in response to variation in nitrogen and phosphorus availabilities.
    Minden V; Verhoeven K; Olde Venterink H
    Ecol Evol; 2023 May; 13(5):e10075. PubMed ID: 37193113
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Nutrient limitation restricts growth and reproductive output in a tropical montane cloud forest bromeliad: findings from a long-term forest fertilization experiment.
    Lasso E; Ackerman JD
    Oecologia; 2013 Jan; 171(1):165-74. PubMed ID: 22767363
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Cascading influences of grassland degradation on nutrient limitation in a high mountain lake and its inflow streams.
    Ren Z; Niu D; Ma P; Wang Y; Fu H; Elser JJ
    Ecology; 2019 Aug; 100(8):e02755. PubMed ID: 31087341
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Humic substances-part 7: the biogeochemistry of dissolved organic carbon and its interactions with climate change.
    Porcal P; Koprivnjak JF; Molot LA; Dillon PJ
    Environ Sci Pollut Res Int; 2009 Sep; 16(6):714-26. PubMed ID: 19462191
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A direct test of nitrogen and phosphorus limitation to net primary productivity in a lowland tropical wet forest.
    Alvarez-Clare S; Mack MC; Brooks M
    Ecology; 2013 Jul; 94(7):1540-51. PubMed ID: 23951714
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Transcriptomic Evidence of Adaptive Evolution of the Epiphytic Fern
    Zhang J; Liu L; Shu JP; Jin DM; Shen H; Chen HF; Zhang R; Yan YH
    Int J Genomics; 2019; 2019():1429316. PubMed ID: 31871926
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Nitrogen cycling in canopy soils of tropical montane forests responds rapidly to indirect N and P fertilization.
    Matson AL; Corre MD; Veldkamp E
    Glob Chang Biol; 2014 Dec; 20(12):3802-13. PubMed ID: 24965673
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Foliar nutrient concentrations of six northern hardwood species responded to nitrogen and phosphorus fertilization but did not predict tree growth.
    Hong DS; Gonzales KE; Fahey TJ; Yanai RD
    PeerJ; 2022; 10():e13193. PubMed ID: 35474687
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Plant responses to fertilization experiments in lowland, species-rich, tropical forests.
    Wright SJ; Turner BL; Yavitt JB; Harms KE; Kaspari M; Tanner EVJ; Bujan J; Griffin EA; Mayor JR; Pasquini SC; Sheldrake M; Garcia MN
    Ecology; 2018 May; 99(5):1129-1138. PubMed ID: 29460277
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.