These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

132 related articles for article (PubMed ID: 38046517)

  • 1. Molecular docking-based screening of methicillin-resistant
    Akkiraju AG; Badugu A; Das A; Sagurthi SR
    Bioinformation; 2023; 19(11):1035-1042. PubMed ID: 38046517
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Integrated Multi-omics, Virtual Screening and Molecular Docking Analysis of Methicillin-Resistant
    Rahman S; Das AK
    Int J Pept Res Ther; 2021; 27(4):2735-2755. PubMed ID: 34548853
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Cloning, Purification, and Biophysical Characterization of FemB Protein from Methicillin-Resistant Staphylococcus aureus and Inhibitors Screening.
    Akkiraju AG; Atcha KR; Sagurthi SR
    Appl Biochem Biotechnol; 2024 Aug; 196(8):4974-4992. PubMed ID: 37991634
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Virtual screening and antimicrobial evaluation for identification of natural compounds as the prospective inhibitors of antibacterial drug resistance targets in Staphylococcus aureus.
    Sharma HK; Gupta P; Nagpal D; Mukherjee M; Parmar VS; Lather V
    Fitoterapia; 2023 Jul; 168():105554. PubMed ID: 37270161
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Potential inhibitors of FemC to combat
    Rathi R
    J Biomol Struct Dyn; 2023 Dec; 41(20):10495-10506. PubMed ID: 36524526
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The essential Staphylococcus aureus gene fmhB is involved in the first step of peptidoglycan pentaglycine interpeptide formation.
    Rohrer S; Ehlert K; Tschierske M; Labischinski H; Berger-Bächi B
    Proc Natl Acad Sci U S A; 1999 Aug; 96(16):9351-6. PubMed ID: 10430946
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Synergistic antibacterial effects of herbal extracts and antibiotics on methicillin-resistant Staphylococcus aureus: A computational and experimental study.
    Kuok CF; Hoi SO; Hoi CF; Chan CH; Fong IH; Ngok CK; Meng LR; Fong P
    Exp Biol Med (Maywood); 2017 Apr; 242(7):731-743. PubMed ID: 28118725
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The Killing Mechanism of Teixobactin against Methicillin-Resistant Staphylococcus aureus: an Untargeted Metabolomics Study.
    Hussein M; Karas JA; Schneider-Futschik EK; Chen F; Swarbrick J; Paulin OKA; Hoyer D; Baker M; Zhu Y; Li J; Velkov T
    mSystems; 2020 May; 5(3):. PubMed ID: 32457238
    [TBL] [Abstract][Full Text] [Related]  

  • 9. FmhA and FmhC of
    Willing S; Dyer E; Schneewind O; Missiakas D
    J Biol Chem; 2020 Sep; 295(39):13664-13676. PubMed ID: 32759309
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Methicillin-resistance in Staphylococcus aureus - molecular basis, novel targets and antibiotic therapy.
    Ehlert K
    Curr Pharm Des; 1999 Feb; 5(2):45-55. PubMed ID: 10066883
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Cell wall monoglycine cross-bridges and methicillin hypersusceptibility in a femAB null mutant of methicillin-resistant Staphylococcus aureus.
    Strandén AM; Ehlert K; Labischinski H; Berger-Bächi B
    J Bacteriol; 1997 Jan; 179(1):9-16. PubMed ID: 8981974
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Staphylococcus aureus mutants with increased lysostaphin resistance.
    Gründling A; Missiakas DM; Schneewind O
    J Bacteriol; 2006 Sep; 188(17):6286-97. PubMed ID: 16923896
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Repurposing Approved Drugs as Fluoroquinolone Potentiators to Overcome Efflux Pump Resistance in Staphylococcus aureus.
    Mahey N; Tambat R; Chandal N; Verma DK; Thakur KG; Nandanwar H
    Microbiol Spectr; 2021 Dec; 9(3):e0095121. PubMed ID: 34908453
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Computational Screening of Approved Drugs for Inhibition of the Antibiotic Resistance Gene
    Otarigho B; Falade MO
    BioTech (Basel); 2023 Mar; 12(2):. PubMed ID: 37092469
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Structure-Based Discovery of Potent
    Qureshi B; Khalil R; Saeed M; Nur-E-Alam M; Ahmed S; Ul-Haq Z
    Med Chem; 2022; 19(1):75-90. PubMed ID: 35392789
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Synergistic Combinations of FDA-Approved Drugs with Ceftobiprole against Methicillin-Resistant Staphylococcus aureus.
    Sharma AD; Gutheil WG
    Microbiol Spectr; 2023 Feb; 11(1):e0372622. PubMed ID: 36519895
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Methicillin resistance in Staphylococcus aureus: mechanisms and modulation.
    Stapleton PD; Taylor PW
    Sci Prog; 2002; 85(Pt 1):57-72. PubMed ID: 11969119
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Mechanisms of methicillin resistance in staphylococci.
    Brakstad OG; Maeland JA
    APMIS; 1997 Apr; 105(4):264-76. PubMed ID: 9164468
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Potential targets by pentacyclic triterpenoids from Callicarpa farinosa against methicillin-resistant and sensitive Staphylococcus aureus.
    Chung PY; Chung LY; Navaratnam P
    Fitoterapia; 2014 Apr; 94():48-54. PubMed ID: 24508863
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Computational Target-Based Screening of Anti-MRSA Natural Products Reveals Potential Multitarget Mechanisms of Action through Peptidoglycan Synthesis Proteins.
    Oselusi SO; Fadaka AO; Wyckoff GJ; Egieyeh SA
    ACS Omega; 2022 Oct; 7(42):37896-37906. PubMed ID: 36312373
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.