BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

139 related articles for article (PubMed ID: 38047032)

  • 1. Assessing lead and cadmium tolerance of
    Jan T; Khan N; Wahab M; Okla MK; Abdel-Maksoud MA; Saleh IA; Abu-Harirah HA; AlRamadneh TN; AbdElgawad H
    PeerJ; 2023; 11():e16369. PubMed ID: 38047032
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Indirect shoot organogenesis from leaf explants of Adhatoda vasica Nees.
    Mandal J; Laxminarayana U
    Springerplus; 2014; 3():648. PubMed ID: 25485191
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Studies on lead and cadmium toxicity in Dianthus carthusianorum calamine ecotype cultivated in vitro.
    Muszyńska E; Hanus-Fajerska E; Ciarkowska K
    Plant Biol (Stuttg); 2018 May; 20(3):474-482. PubMed ID: 29450951
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Differential Tolerance to Lead and Cadmium of Micropropagated
    Muszyńska E; Hanus-Fajerska E; Koźmińska A
    Water Air Soil Pollut; 2018; 229(2):42. PubMed ID: 29398730
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Induction, Subculture Cycle, and Regeneration of Callus in Safed Musli (
    Nakasha JJ; Sinniah UR; Kemat N; Mallappa KS
    Pharmacogn Mag; 2016 Jul; 12(Suppl 4):S460-S464. PubMed ID: 27761075
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Role of TDZ in the quick regeneration of multiple shoots from nodal explant of Vitex trifolia L.--an important medicinal plant.
    Ahmed MR; Anis M
    Appl Biochem Biotechnol; 2012 Nov; 168(5):957-66. PubMed ID: 23065400
    [TBL] [Abstract][Full Text] [Related]  

  • 7. In vitro propagation from axillary buds of the endangered tree
    Hernández-García A; Ambriz-Parra E; López-Albarrán P; Cruz-de León J; Salgado-Garciglia R
    Plant Biotechnol (Tokyo); 2021 Dec; 38(4):409-414. PubMed ID: 35087305
    [No Abstract]   [Full Text] [Related]  

  • 8. Mass propagation through direct and indirect organogenesis in three species of genus Zephyranthes and ploidy assessment of regenerants through flow cytometry.
    Syeed R; Mujib A; Malik MQ; Mamgain J; Ejaz B; Gulzar B; Zafar N
    Mol Biol Rep; 2021 Jan; 48(1):513-526. PubMed ID: 33442831
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Micropropagation of Penthorum chinense through axillary buds.
    Yang J; Peng ZS
    Methods Mol Biol; 2009; 547():191-201. PubMed ID: 19521846
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Phytoextraction of Pb and Cd by the Mediterranean saltbush (Atriplex halimus L.): metal uptake in relation to salinity.
    Manousaki E; Kalogerakis N
    Environ Sci Pollut Res Int; 2009 Nov; 16(7):844-54. PubMed ID: 19597858
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A high-frequency in vitro multiplication, micromorphological studies and ex vitro rooting of Cadaba fruticosa (L.) Druce (Bahuguni): a multipurpose endangered medicinal shrub.
    Lodha D; Patel AK; Shekhawat NS
    Physiol Mol Biol Plants; 2015 Jul; 21(3):407-15. PubMed ID: 26261405
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Mass propagation of Plectranthus bourneae Gamble through indirect organogenesis from leaf and internode explants.
    Thaniarasu R; Senthil Kumar T; Rao MV
    Physiol Mol Biol Plants; 2016 Jan; 22(1):143-51. PubMed ID: 27186028
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Large-scale in vitro multiplication of Crataeva nurvala.
    Babbar SB; Walia N; Kaur A
    Methods Mol Biol; 2009; 547():61-70. PubMed ID: 19521835
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effect of Growth Regulators on In Vitro Morphogenic Response of Boscia senegalensis (Pers.) Lam. Poir. Using Mature Zygotic Embryos Explants.
    Daffalla HH; Abdellatef E; Elhadi EA; Khalafalla MM
    Biotechnol Res Int; 2011; 2011():710758. PubMed ID: 21687567
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Micropropagation of Polygonum multiflorum THUNB and quantitative analysis of the anthraquinones emodin and physcion formed in in vitro propagated shoots and plants.
    Lin LC; Nalawade SM; Mulabagal V; Yeh MS; Tsay HS
    Biol Pharm Bull; 2003 Oct; 26(10):1467-71. PubMed ID: 14519956
    [TBL] [Abstract][Full Text] [Related]  

  • 16. High-frequency adventitious shoot organogenesis from
    Gharari Z; Bagheri K; Sharafi A
    BioTechnologia (Pozn); 2022; 103(2):143-151. PubMed ID: 36606069
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Genome size and gas chromatography-mass spectrometry (GC-MS) analysis of field-grown and in vitro regenerated Pluchea lanceolata plants.
    Mamgain J; Mujib A; Syeed R; Ejaz B; Malik MQ; Bansal Y
    J Appl Genet; 2023 Feb; 64(1):1-21. PubMed ID: 36175751
    [TBL] [Abstract][Full Text] [Related]  

  • 18. High frequency regeneration of plants via callus-mediated organogenesis from cotyledon and hypocotyl cultures in a multipurpose tropical tree (Neolamarkia Cadamba).
    Huang H; Wei Y; Zhai Y; Ouyang K; Chen X; Bai L
    Sci Rep; 2020 Mar; 10(1):4558. PubMed ID: 32165694
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Growth optimization and organogenesis of Gerbera jamesonii Bolus ex. Hook f. in vitro.
    Hasbullah NA; Taha RM; Awal A
    Pak J Biol Sci; 2008 Jun; 11(11):1449-54. PubMed ID: 18817245
    [TBL] [Abstract][Full Text] [Related]  

  • 20. An efficient and reproducible indirect shoot regeneration from female leaf explants of Simmondsia chinensis, a liquid-wax producing shrub.
    Bala R; Beniwal VS; Laura JS
    Physiol Mol Biol Plants; 2015 Apr; 21(2):293-9. PubMed ID: 25964722
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.