These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
139 related articles for article (PubMed ID: 38047163)
81. Detection and diagnosis of dental caries using a deep learning-based convolutional neural network algorithm. Lee JH; Kim DH; Jeong SN; Choi SH J Dent; 2018 Oct; 77():106-111. PubMed ID: 30056118 [TBL] [Abstract][Full Text] [Related]
82. Prediction of efficacy of bitewing radiographs for caries detection. White SC; Kaffe I; Gornbein JA Oral Surg Oral Med Oral Pathol; 1990 Apr; 69(4):506-13. PubMed ID: 2326040 [TBL] [Abstract][Full Text] [Related]
83. Teeth segmentation and carious lesions segmentation in panoramic X-ray images using CariSeg, a networks' ensemble. Mărginean AC; Mureşanu S; Hedeşiu M; Dioşan L Heliyon; 2024 May; 10(10):e30836. PubMed ID: 38803980 [TBL] [Abstract][Full Text] [Related]
84. Reproducibility of subtraction radiography in monitoring changes in approximal carious lesions in children: An in vivo study. Al-Sane M; Ricketts DN; Mendes FM; Altarakemah Y; Deery C; Innes N; Rollings S Int J Paediatr Dent; 2020 Sep; 30(5):587-596. PubMed ID: 32181942 [TBL] [Abstract][Full Text] [Related]
85. In-vivo performance of impedance spectroscopy, laser fluorescence, and bitewing radiographs for occlusal caries detection. Mortensen D; Hessing-Olsen I; Ekstrand KR; Twetman S Quintessence Int; 2018; 49(4):293-299. PubMed ID: 29484311 [TBL] [Abstract][Full Text] [Related]
86. Prediction of pulp exposure risk of carious pulpitis based on deep learning. Wang L; Wu F; Xiao M; Chen YX; Wu L Hua Xi Kou Qiang Yi Xue Za Zhi; 2023 Apr; 41(2):218-224. PubMed ID: 37056189 [TBL] [Abstract][Full Text] [Related]
87. Use of the ICDAS system and two fluorescence-based intraoral devices for examination of occlusal surfaces. Theocharopoulou A; Lagerweij MD; van Strijp AJ Eur J Paediatr Dent; 2015 Mar; 16(1):51-5. PubMed ID: 25793954 [TBL] [Abstract][Full Text] [Related]
88. Atraumatic restorative treatment versus conventional restorative treatment for managing dental caries. Dorri M; Martinez-Zapata MJ; Walsh T; Marinho VC; Sheiham Deceased A; Zaror C Cochrane Database Syst Rev; 2017 Dec; 12(12):CD008072. PubMed ID: 29284075 [TBL] [Abstract][Full Text] [Related]
89. [A deep learning segmentation model for detecting caries in molar teeth]. Zang XY; Qiao B; Meng FH; Jin NH; Hu SX; Li LB; Xing LJ; Chen F; Wang Y; Zhang HZ Zhonghua Yi Xue Za Zhi; 2022 Aug; 102(32):2538-2540. PubMed ID: 36008325 [TBL] [Abstract][Full Text] [Related]
90. Convolutional neural network for automated mass segmentation in mammography. Abdelhafiz D; Bi J; Ammar R; Yang C; Nabavi S BMC Bioinformatics; 2020 Dec; 21(Suppl 1):192. PubMed ID: 33297952 [TBL] [Abstract][Full Text] [Related]
91. Deep learning for caries lesion detection in near-infrared light transillumination images: A pilot study. Schwendicke F; Elhennawy K; Paris S; Friebertshäuser P; Krois J J Dent; 2020 Jan; 92():103260. PubMed ID: 31821853 [TBL] [Abstract][Full Text] [Related]
92. Artificial Intelligence: A Mighty Adjunct for Caries Detection. Vakay R; Alex G Compend Contin Educ Dent; 2024 Feb; 45(2):110-112. PubMed ID: 38289629 [TBL] [Abstract][Full Text] [Related]
93. Combining transfer learning with retinal lesion features for accurate detection of diabetic retinopathy. Hassan D; Gill HM; Happe M; Bhatwadekar AD; Hajrasouliha AR; Janga SC Front Med (Lausanne); 2022; 9():1050436. PubMed ID: 36425113 [TBL] [Abstract][Full Text] [Related]
94. Deep learning for automated segmentation of the temporomandibular joint. Vinayahalingam S; Berends B; Baan F; Moin DA; van Luijn R; Bergé S; Xi T J Dent; 2023 May; 132():104475. PubMed ID: 36870441 [TBL] [Abstract][Full Text] [Related]
95. Validation of an Artificial Intelligence-Based Model for Early Childhood Caries Detection in Dental Photographs. Schwarzmaier J; Frenkel E; Neumayr J; Ammar N; Kessler A; Schwendicke F; Kühnisch J; Dujic H J Clin Med; 2024 Sep; 13(17):. PubMed ID: 39274428 [No Abstract] [Full Text] [Related]
96. Clinical Management of Interproximal and Occlusal Caries in Children and Adolescents by Canadian Dentists: A Survey. Moreau AM; Pelletier SD; Ngoc CN; Rompré PH; Vu DD J Can Dent Assoc; 2022 Mar; 88():m3. PubMed ID: 35881059 [TBL] [Abstract][Full Text] [Related]
97. Diagnosis of caries progression from serial bitewings: a comparison between teachers and practitioners. Benn DK Br Dent J; 1993 Jul; 175(1):26-32. PubMed ID: 8334049 [TBL] [Abstract][Full Text] [Related]
98. An artificial intelligence model for instance segmentation and tooth numbering on orthopantomograms. Adnan N; Khalid WB; Umer F Int J Comput Dent; 2023 Nov; 26(4):301-309. PubMed ID: 36705317 [TBL] [Abstract][Full Text] [Related]
99. Artificial intelligence in the diagnosis of dental diseases on panoramic radiographs: a preliminary study. Zhu J; Chen Z; Zhao J; Yu Y; Li X; Shi K; Zhang F; Yu F; Shi K; Sun Z; Lin N; Zheng Y BMC Oral Health; 2023 Jun; 23(1):358. PubMed ID: 37270488 [TBL] [Abstract][Full Text] [Related]
100. The diagnostic accuracy of a laser fluorescence device and digital radiography in detecting approximal caries lesions in posterior permanent teeth: an in vivo study. Menem R; Barngkgei I; Beiruti N; Al Haffar I; Joury E Lasers Med Sci; 2017 Apr; 32(3):621-628. PubMed ID: 28194533 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]