BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

112 related articles for article (PubMed ID: 38047300)

  • 1. Identification of FOXP3
    Gong R; Chen X; Sun X; Zhang Y; Wang J; Yu Q; Lei K; Ren H
    Am J Physiol Cell Physiol; 2024 Jan; 326(1):C294-C303. PubMed ID: 38047300
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Interleukin 35 Expression Correlates With Microvessel Density in Pancreatic Ductal Adenocarcinoma, Recruits Monocytes, and Promotes Growth and Angiogenesis of Xenograft Tumors in Mice.
    Huang C; Li Z; Li N; Li Y; Chang A; Zhao T; Wang X; Wang H; Gao S; Yang S; Hao J; Ren H
    Gastroenterology; 2018 Feb; 154(3):675-688. PubMed ID: 28989066
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Long non-coding RNA LOC389641 promotes progression of pancreatic ductal adenocarcinoma and increases cell invasion by regulating E-cadherin in a TNFRSF10A-related manner.
    Zheng S; Chen H; Wang Y; Gao W; Fu Z; Zhou Q; Jiang Y; Lin Q; Tan L; Ye H; Zhao X; Luo Y; Li G; Ye L; Liu Y; Li W; Li Z; Chen R
    Cancer Lett; 2016 Feb; 371(2):354-65. PubMed ID: 26708505
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Cancer-FOXP3 directly activated CCL5 to recruit FOXP3
    Wang X; Lang M; Zhao T; Feng X; Zheng C; Huang C; Hao J; Dong J; Luo L; Li X; Lan C; Yu W; Yu M; Yang S; Ren H
    Oncogene; 2017 May; 36(21):3048-3058. PubMed ID: 27991933
    [TBL] [Abstract][Full Text] [Related]  

  • 5. PD-L1 is a direct target of cancer-FOXP3 in pancreatic ductal adenocarcinoma (PDAC), and combined immunotherapy with antibodies against PD-L1 and CCL5 is effective in the treatment of PDAC.
    Wang X; Li X; Wei X; Jiang H; Lan C; Yang S; Wang H; Yang Y; Tian C; Xu Z; Zhang J; Hao J; Ren H
    Signal Transduct Target Ther; 2020 Apr; 5(1):38. PubMed ID: 32300119
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Linc00511 acts as a competing endogenous RNA to regulate VEGFA expression through sponging hsa-miR-29b-3p in pancreatic ductal adenocarcinoma.
    Zhao X; Liu Y; Li Z; Zheng S; Wang Z; Li W; Bi Z; Li L; Jiang Y; Luo Y; Lin Q; Fu Z; Rufu C
    J Cell Mol Med; 2018 Jan; 22(1):655-667. PubMed ID: 28984028
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Prognostic value of immune factors in the tumor microenvironment of patients with pancreatic ductal adenocarcinoma.
    Kiryu S; Ito Z; Suka M; Bito T; Kan S; Uchiyama K; Saruta M; Hata T; Takano Y; Fujioka S; Misawa T; Yamauchi T; Yanagisawa H; Sato N; Ohkusa T; Sugiyama H; Koido S
    BMC Cancer; 2021 Nov; 21(1):1197. PubMed ID: 34758773
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Knockdown of FOXO3a induces epithelial-mesenchymal transition and promotes metastasis of pancreatic ductal adenocarcinoma by activation of the β-catenin/TCF4 pathway through SPRY2.
    Li J; Yang R; Dong Y; Chen M; Wang Y; Wang G
    J Exp Clin Cancer Res; 2019 Jan; 38(1):38. PubMed ID: 30691517
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Anti-tumor activity of cediranib, a pan-vascular endothelial growth factor receptor inhibitor, in pancreatic ductal adenocarcinoma cells.
    Momeny M; Alishahi Z; Eyvani H; Esmaeili F; Zaghal A; Ghaffari P; Tavakkoly-Bazzaz J; Alimoghaddam K; Ghavamzadeh A; Ghaffari SH
    Cell Oncol (Dordr); 2020 Feb; 43(1):81-93. PubMed ID: 31512195
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Accumulation of FOXP3+T-cells in the tumor microenvironment is associated with an epithelial-mesenchymal-transition-type tumor budding phenotype and is an independent prognostic factor in surgically resected pancreatic ductal adenocarcinoma.
    Wartenberg M; Zlobec I; Perren A; Koelzer VH; Gloor B; Lugli A; Karamitopoulou E
    Oncotarget; 2015 Feb; 6(6):4190-201. PubMed ID: 25669968
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Prognostic and Functional Significance of MAP4K5 in Pancreatic Cancer.
    Wang OH; Azizian N; Guo M; Capello M; Deng D; Zang F; Fry J; Katz MH; Fleming JB; Lee JE; Wolff RA; Hanash S; Wang H; Maitra A
    PLoS One; 2016; 11(3):e0152300. PubMed ID: 27023625
    [TBL] [Abstract][Full Text] [Related]  

  • 12. CD25 and TGF-β blockade based on predictive integrated immune ratio inhibits tumor growth in pancreatic cancer.
    Pu N; Zhao G; Yin H; Li JA; Nuerxiati A; Wang D; Xu X; Kuang T; Jin D; Lou W; Wu W
    J Transl Med; 2018 Oct; 16(1):294. PubMed ID: 30359281
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Epithelial-to-mesenchymal transition in pancreatic ductal adenocarcinoma: Characterization in a 3D-cell culture model.
    Gagliano N; Celesti G; Tacchini L; Pluchino S; Sforza C; Rasile M; Valerio V; Laghi L; Conte V; Procacci P
    World J Gastroenterol; 2016 May; 22(18):4466-83. PubMed ID: 27182158
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Protein kinase D1 promotes anchorage-independent growth, invasion, and angiogenesis by human pancreatic cancer cells.
    Ochi N; Tanasanvimon S; Matsuo Y; Tong Z; Sung B; Aggarwal BB; Sinnett-Smith J; Rozengurt E; Guha S
    J Cell Physiol; 2011 Apr; 226(4):1074-81. PubMed ID: 20857418
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Down-regulation of microRNA-494 via loss of SMAD4 increases FOXM1 and β-catenin signaling in pancreatic ductal adenocarcinoma cells.
    Li L; Li Z; Kong X; Xie D; Jia Z; Jiang W; Cui J; Du Y; Wei D; Huang S; Xie K
    Gastroenterology; 2014 Aug; 147(2):485-97.e18. PubMed ID: 24859161
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Linc00675 is a novel marker of short survival and recurrence in patients with pancreatic ductal adenocarcinoma.
    Li DD; Fu ZQ; Lin Q; Zhou Y; Zhou QB; Li ZH; Tan LP; Chen RF; Liu YM
    World J Gastroenterol; 2015 Aug; 21(31):9348-57. PubMed ID: 26309360
    [TBL] [Abstract][Full Text] [Related]  

  • 17. BACH1 Promotes Pancreatic Cancer Metastasis by Repressing Epithelial Genes and Enhancing Epithelial-Mesenchymal Transition.
    Sato M; Matsumoto M; Saiki Y; Alam M; Nishizawa H; Rokugo M; Brydun A; Yamada S; Kaneko MK; Funayama R; Ito M; Kato Y; Nakayama K; Unno M; Igarashi K
    Cancer Res; 2020 Mar; 80(6):1279-1292. PubMed ID: 31919242
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Cadherin-1 and cadherin-3 cooperation determines the aggressiveness of pancreatic ductal adenocarcinoma.
    Siret C; Dobric A; Martirosyan A; Terciolo C; Germain S; Bonier R; Dirami T; Dusetti N; Tomasini R; Rubis M; Garcia S; Iovanna J; Lombardo D; Rigot V; André F
    Br J Cancer; 2018 Feb; 118(4):546-557. PubMed ID: 29161242
    [TBL] [Abstract][Full Text] [Related]  

  • 19. SMAD4 loss triggers the phenotypic changes of pancreatic ductal adenocarcinoma cells.
    Chen YW; Hsiao PJ; Weng CC; Kuo KK; Kuo TL; Wu DC; Hung WC; Cheng KH
    BMC Cancer; 2014 Mar; 14():181. PubMed ID: 24625091
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Integrated Genomic and Immunophenotypic Classification of Pancreatic Cancer Reveals Three Distinct Subtypes with Prognostic/Predictive Significance.
    Wartenberg M; Cibin S; Zlobec I; Vassella E; Eppenberger-Castori S; Terracciano L; Eichmann MD; Worni M; Gloor B; Perren A; Karamitopoulou E
    Clin Cancer Res; 2018 Sep; 24(18):4444-4454. PubMed ID: 29661773
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 6.