BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

130 related articles for article (PubMed ID: 38047304)

  • 1. TRPV1 enhances cholecystokinin signaling in primary vagal afferent neurons and mediates the central effects on spontaneous glutamate release in the NTS.
    Arnold RA; Fowler DK; Peters JH
    Am J Physiol Cell Physiol; 2024 Jan; 326(1):C112-C124. PubMed ID: 38047304
    [TBL] [Abstract][Full Text] [Related]  

  • 2. TRPM3 expression and control of glutamate release from primary vagal afferent neurons.
    Ragozzino FJ; Arnold RA; Fenwick AJ; Riley TP; Lindberg JEM; Peterson B; Peters JH
    J Neurophysiol; 2021 Jan; 125(1):199-210. PubMed ID: 33296617
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Role of transient receptor potential channels in cholecystokinin-induced activation of cultured vagal afferent neurons.
    Zhao H; Simasko SM
    Endocrinology; 2010 Nov; 151(11):5237-46. PubMed ID: 20881249
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Channeling satiation: a primer on the role of TRP channels in the control of glutamate release from vagal afferent neurons.
    Wu SW; Fenwick AJ; Peters JH
    Physiol Behav; 2014 Sep; 136():179-84. PubMed ID: 25290762
    [TBL] [Abstract][Full Text] [Related]  

  • 5. CCK-sensitive C fibers activate NTS leptin receptor-expressing neurons via NMDA receptors.
    Neyens DM; Brenner L; Calkins R; Winzenried ET; Ritter RC; Appleyard SM
    Am J Physiol Regul Integr Comp Physiol; 2024 May; 326(5):R383-R400. PubMed ID: 38105761
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Vagal afferent NMDA receptors modulate CCK-induced reduction of food intake through synapsin I phosphorylation in adult male rats.
    Campos CA; Shiina H; Silvas M; Page S; Ritter RC
    Endocrinology; 2013 Aug; 154(8):2613-25. PubMed ID: 23715865
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Gastric vagal afferent neuropathy following experimental spinal cord injury.
    Besecker EM; Blanke EN; Deiter GM; Holmes GM
    Exp Neurol; 2020 Jan; 323():113092. PubMed ID: 31697943
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Comparative pharmacology of cholecystokinin induced activation of cultured vagal afferent neurons from rats and mice.
    Kinch DC; Peters JH; Simasko SM
    PLoS One; 2012; 7(4):e34755. PubMed ID: 22514663
    [TBL] [Abstract][Full Text] [Related]  

  • 9. CCK-induced reduction of food intake and hindbrain MAPK signaling are mediated by NMDA receptor activation.
    Campos CA; Wright JS; Czaja K; Ritter RC
    Endocrinology; 2012 Jun; 153(6):2633-46. PubMed ID: 22508518
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Genetic and pharmacological evidence for low-abundance TRPV3 expression in primary vagal afferent neurons.
    Wu SW; Lindberg JE; Peters JH
    Am J Physiol Regul Integr Comp Physiol; 2016 May; 310(9):R794-805. PubMed ID: 26843581
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Thermally active TRPV1 tonically drives central spontaneous glutamate release.
    Shoudai K; Peters JH; McDougall SJ; Fawley JA; Andresen MC
    J Neurosci; 2010 Oct; 30(43):14470-5. PubMed ID: 20980604
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Sensory signal transduction in the vagal primary afferent neurons.
    Li Y
    Curr Med Chem; 2007; 14(24):2554-63. PubMed ID: 17979708
    [TBL] [Abstract][Full Text] [Related]  

  • 13. TRPV1 marks synaptic segregation of multiple convergent afferents at the rat medial solitary tract nucleus.
    Peters JH; McDougall SJ; Fawley JA; Andresen MC
    PLoS One; 2011; 6(9):e25015. PubMed ID: 21949835
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Cannabidiol activation of vagal afferent neurons requires TRPA1.
    Kowalski CW; Ragozzino FJ; Lindberg JEM; Peterson B; Lugo JM; McLaughlin RJ; Peters JH
    J Neurophysiol; 2020 Nov; 124(5):1388-1398. PubMed ID: 32965166
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Mapping of Sensory Nerve Subsets within the Vagal Ganglia and the Brainstem Using Reporter Mice for Pirt, TRPV1, 5-HT3, and Tac1 Expression.
    Kim SH; Hadley SH; Maddison M; Patil M; Cha B; Kollarik M; Taylor-Clark TE
    eNeuro; 2020; 7(2):. PubMed ID: 32060036
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Circadian regulation of glutamate release pathways shapes synaptic throughput in the brainstem nucleus of the solitary tract (NTS).
    Ragozzino FJ; Peterson BA; Karatsoreos IN; Peters JH
    J Physiol; 2023 May; 601(10):1881-1896. PubMed ID: 36975145
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Corticosterone inhibits vagal afferent glutamate release in the nucleus of the solitary tract via retrograde endocannabinoid signaling.
    Ragozzino FJ; Arnold RA; Kowalski CW; Savenkova MI; Karatsoreos IN; Peters JH
    Am J Physiol Cell Physiol; 2020 Dec; 319(6):C1097-C1106. PubMed ID: 32966126
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Distinct Calcium Sources Support Multiple Modes of Synaptic Release from Cranial Sensory Afferents.
    Fawley JA; Hofmann ME; Andresen MC
    J Neurosci; 2016 Aug; 36(34):8957-66. PubMed ID: 27559176
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Modulation of vagal afferent excitation and reduction of food intake by leptin and cholecystokinin.
    Peters JH; Simasko SM; Ritter RC
    Physiol Behav; 2006 Nov; 89(4):477-85. PubMed ID: 16872644
    [TBL] [Abstract][Full Text] [Related]  

  • 20. TRPV1 channels contribute to spontaneous glutamate release in nucleus tractus solitarii following chronic intermittent hypoxia.
    Kline DD; Wang S; Kunze DL
    J Neurophysiol; 2019 Mar; 121(3):881-892. PubMed ID: 30601692
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.