These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

90 related articles for article (PubMed ID: 3804734)

  • 1. [Dicarboxylic acids inhibit the growth of keratinocytes in vitro].
    Detmar M; Müller R; Stadler R; Orfanos CE
    Hautarzt; 1986 Nov; 37(11):625-7. PubMed ID: 3804734
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effect of dicarboxylic (C6 and C9) acids on a human squamous carcinoma cell line in culture.
    Pätzold HC; Breathnach AS; Robins EJ; Daridan ME; Bhasin YP; Ethridge LB; Nazzaro-Porro M; Passi S; Picardo M
    Histol Histopathol; 1989 Apr; 4(2):167-71. PubMed ID: 2520453
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Azelaic acid: mode of action at cellular and subcellular levels.
    Galhaup I
    Acta Derm Venereol Suppl (Stockh); 1989; 143():75-82. PubMed ID: 2475996
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Observations on cell kinetics and viability of a human melanoma cell line exposed to dicarboxylic acids in tissue culture.
    Breathnach AS; Robins EJ; Bhasin Y; Ethridge L; Nazzaro-Porro M; Passi S; Picardo M
    Histol Histopathol; 1986 Jul; 1(3):235-9. PubMed ID: 2980117
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effects of azelaic acid on proliferation and ultrastructure of mouse keratinocytes in vitro.
    Detmar M; Mayer-da-Silva A; Stadler R; Orfanos CE
    J Invest Dermatol; 1989 Jul; 93(1):70-4. PubMed ID: 2473140
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effect of dicarboxylic acids (C6 and C9) on human choroidal melanoma in cell culture.
    Breathnach AS; Robins EJ; Pätzold HC; Bhasin YP; Ethridge LB; Garner A; Nazzaro-Porro M
    Invest Ophthalmol Vis Sci; 1989 Mar; 30(3):491-8. PubMed ID: 2925320
    [TBL] [Abstract][Full Text] [Related]  

  • 7. [Effect of azelaic acid on the growth of melanoma cell cultures in comparison with fibroblast cultures].
    Geier G; Hauschild T; Bauer R; Kreysel HW
    Hautarzt; 1986 Mar; 37(3):146-8. PubMed ID: 3700102
    [TBL] [Abstract][Full Text] [Related]  

  • 8. On the effect of aliphatic saturated dicarboxylic acids on anaerobic glycolysis in chicken embryo.
    Bargoni N; Tazartes O
    Ital J Biochem; 1983; 32(6):385-90. PubMed ID: 6233235
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Small aliphatic dicarboxylic acids inhibit renal uptake of administered mercury.
    Zalups RK; Barfuss DW
    Toxicol Appl Pharmacol; 1998 Jan; 148(1):183-93. PubMed ID: 9465278
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Hyperpigmentary disorders--mechanisms of action. Effect of azelaic acid on melanoma and other tumoral cells in culture.
    Breathnach AS; Robins EJ; Nazzaro-Porro M; Passi S; Picardo M
    Acta Derm Venereol Suppl (Stockh); 1989; 143():62-6. PubMed ID: 2672685
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Dicarboxylic acids affect the growth of dermatophytes in vitro.
    Brasch J; Friege B
    Acta Derm Venereol; 1994 Sep; 74(5):347-50. PubMed ID: 7817668
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Influence of sodium salts of saturated medium chain length (C6, C9, C10 and C12) dicarboxylic acids on the uterine horn of rat in vitro.
    Mingrone G; Mancinelli R; Metro D
    Q J Exp Physiol; 1988 Mar; 73(2):153-62. PubMed ID: 3164112
    [TBL] [Abstract][Full Text] [Related]  

  • 13. [Health standardization of sebacic and adipic acids in water reservoirs].
    Novikov IuV; Andreev NA; Ivanov IuV; Fedonina VF; Gosteva LI
    Gig Sanit; 1983 Sep; (9):72-5. PubMed ID: 6629047
    [No Abstract]   [Full Text] [Related]  

  • 14. Azelaic acid: potential as a general antitumoural agent.
    Breathnach AS
    Med Hypotheses; 1999 Mar; 52(3):221-6. PubMed ID: 10362281
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Lysophosphatidic acid induction of transforming growth factors alpha and beta: modulation of proliferation and differentiation in cultured human keratinocytes and mouse skin.
    Piazza GA; Ritter JL; Baracka CA
    Exp Cell Res; 1995 Jan; 216(1):51-64. PubMed ID: 7813633
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Scanning electron microscopy of human and murine melanoma cells exposed to medium chain-length (C6-C12) dicarboxylic acids in tissue culture.
    Breathnach AS; Robins EJ; Bhasin Y; Ethridge L; Nazzaro-Porro M; Passi S; Picardo M
    Histol Histopathol; 1987 Jul; 2(3):291-7. PubMed ID: 2980732
    [TBL] [Abstract][Full Text] [Related]  

  • 17. C6--C10-dicarboxylic aciduria in starved, fat-fed and diabetic rats receiving decanoic acid or medium-chain triacylglycerol. An in vivo measure of the rate of beta-oxidation of fatty acids.
    Mortensen PB
    Biochim Biophys Acta; 1981 May; 664(2):349-55. PubMed ID: 7248330
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The biological origin of ketotic dicarboxylic aciduria. In vivo and in vitro investigations of the omega-oxidation of C6-C16-monocarboxylic acids in unstarved, starved and diabetic rats.
    Mortensen PB; Gregersen N
    Biochim Biophys Acta; 1981 Dec; 666(3):394-404. PubMed ID: 6798996
    [TBL] [Abstract][Full Text] [Related]  

  • 19. [Use of a method of accelerated hygienic standardization for the chemical content in reservoir water exemplified by adipic and sebacic acids].
    Andreev IA
    Gig Sanit; 1985 Jul; (7):10-3. PubMed ID: 4043741
    [No Abstract]   [Full Text] [Related]  

  • 20. X-ray studies on crystalline complexes involving amino acids and peptides. XLII. Adipic acid complexes of L- and DL-arginine and supramolecular association in arginine-dicarboxylic acid complexes.
    Roy S; Singh DD; Vijayan M
    Acta Crystallogr B; 2005 Feb; 61(Pt 1):89-95. PubMed ID: 15659861
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.