BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

93 related articles for article (PubMed ID: 3804734)

  • 1. [Dicarboxylic acids inhibit the growth of keratinocytes in vitro].
    Detmar M; Müller R; Stadler R; Orfanos CE
    Hautarzt; 1986 Nov; 37(11):625-7. PubMed ID: 3804734
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effect of dicarboxylic (C6 and C9) acids on a human squamous carcinoma cell line in culture.
    Pätzold HC; Breathnach AS; Robins EJ; Daridan ME; Bhasin YP; Ethridge LB; Nazzaro-Porro M; Passi S; Picardo M
    Histol Histopathol; 1989 Apr; 4(2):167-71. PubMed ID: 2520453
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Azelaic acid: mode of action at cellular and subcellular levels.
    Galhaup I
    Acta Derm Venereol Suppl (Stockh); 1989; 143():75-82. PubMed ID: 2475996
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Observations on cell kinetics and viability of a human melanoma cell line exposed to dicarboxylic acids in tissue culture.
    Breathnach AS; Robins EJ; Bhasin Y; Ethridge L; Nazzaro-Porro M; Passi S; Picardo M
    Histol Histopathol; 1986 Jul; 1(3):235-9. PubMed ID: 2980117
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effects of azelaic acid on proliferation and ultrastructure of mouse keratinocytes in vitro.
    Detmar M; Mayer-da-Silva A; Stadler R; Orfanos CE
    J Invest Dermatol; 1989 Jul; 93(1):70-4. PubMed ID: 2473140
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effect of dicarboxylic acids (C6 and C9) on human choroidal melanoma in cell culture.
    Breathnach AS; Robins EJ; Pätzold HC; Bhasin YP; Ethridge LB; Garner A; Nazzaro-Porro M
    Invest Ophthalmol Vis Sci; 1989 Mar; 30(3):491-8. PubMed ID: 2925320
    [TBL] [Abstract][Full Text] [Related]  

  • 7. [Effect of azelaic acid on the growth of melanoma cell cultures in comparison with fibroblast cultures].
    Geier G; Hauschild T; Bauer R; Kreysel HW
    Hautarzt; 1986 Mar; 37(3):146-8. PubMed ID: 3700102
    [TBL] [Abstract][Full Text] [Related]  

  • 8. On the effect of aliphatic saturated dicarboxylic acids on anaerobic glycolysis in chicken embryo.
    Bargoni N; Tazartes O
    Ital J Biochem; 1983; 32(6):385-90. PubMed ID: 6233235
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Small aliphatic dicarboxylic acids inhibit renal uptake of administered mercury.
    Zalups RK; Barfuss DW
    Toxicol Appl Pharmacol; 1998 Jan; 148(1):183-93. PubMed ID: 9465278
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Hyperpigmentary disorders--mechanisms of action. Effect of azelaic acid on melanoma and other tumoral cells in culture.
    Breathnach AS; Robins EJ; Nazzaro-Porro M; Passi S; Picardo M
    Acta Derm Venereol Suppl (Stockh); 1989; 143():62-6. PubMed ID: 2672685
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Dicarboxylic acids affect the growth of dermatophytes in vitro.
    Brasch J; Friege B
    Acta Derm Venereol; 1994 Sep; 74(5):347-50. PubMed ID: 7817668
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Influence of sodium salts of saturated medium chain length (C6, C9, C10 and C12) dicarboxylic acids on the uterine horn of rat in vitro.
    Mingrone G; Mancinelli R; Metro D
    Q J Exp Physiol; 1988 Mar; 73(2):153-62. PubMed ID: 3164112
    [TBL] [Abstract][Full Text] [Related]  

  • 13. [Health standardization of sebacic and adipic acids in water reservoirs].
    Novikov IuV; Andreev NA; Ivanov IuV; Fedonina VF; Gosteva LI
    Gig Sanit; 1983 Sep; (9):72-5. PubMed ID: 6629047
    [No Abstract]   [Full Text] [Related]  

  • 14. Azelaic acid: potential as a general antitumoural agent.
    Breathnach AS
    Med Hypotheses; 1999 Mar; 52(3):221-6. PubMed ID: 10362281
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Lysophosphatidic acid induction of transforming growth factors alpha and beta: modulation of proliferation and differentiation in cultured human keratinocytes and mouse skin.
    Piazza GA; Ritter JL; Baracka CA
    Exp Cell Res; 1995 Jan; 216(1):51-64. PubMed ID: 7813633
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Scanning electron microscopy of human and murine melanoma cells exposed to medium chain-length (C6-C12) dicarboxylic acids in tissue culture.
    Breathnach AS; Robins EJ; Bhasin Y; Ethridge L; Nazzaro-Porro M; Passi S; Picardo M
    Histol Histopathol; 1987 Jul; 2(3):291-7. PubMed ID: 2980732
    [TBL] [Abstract][Full Text] [Related]  

  • 17. C6--C10-dicarboxylic aciduria in starved, fat-fed and diabetic rats receiving decanoic acid or medium-chain triacylglycerol. An in vivo measure of the rate of beta-oxidation of fatty acids.
    Mortensen PB
    Biochim Biophys Acta; 1981 May; 664(2):349-55. PubMed ID: 7248330
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The biological origin of ketotic dicarboxylic aciduria. In vivo and in vitro investigations of the omega-oxidation of C6-C16-monocarboxylic acids in unstarved, starved and diabetic rats.
    Mortensen PB; Gregersen N
    Biochim Biophys Acta; 1981 Dec; 666(3):394-404. PubMed ID: 6798996
    [TBL] [Abstract][Full Text] [Related]  

  • 19. [Use of a method of accelerated hygienic standardization for the chemical content in reservoir water exemplified by adipic and sebacic acids].
    Andreev IA
    Gig Sanit; 1985 Jul; (7):10-3. PubMed ID: 4043741
    [No Abstract]   [Full Text] [Related]  

  • 20. X-ray studies on crystalline complexes involving amino acids and peptides. XLII. Adipic acid complexes of L- and DL-arginine and supramolecular association in arginine-dicarboxylic acid complexes.
    Roy S; Singh DD; Vijayan M
    Acta Crystallogr B; 2005 Feb; 61(Pt 1):89-95. PubMed ID: 15659861
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.