BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

172 related articles for article (PubMed ID: 38047390)

  • 1. Bacterial cyclophane-containing RiPPs from radical SAM enzymes.
    Phan CS; Morinaka BI
    Nat Prod Rep; 2024 May; 41(5):708-720. PubMed ID: 38047390
    [TBL] [Abstract][Full Text] [Related]  

  • 2. P450-Modified Multicyclic Cyclophane-Containing Ribosomally Synthesized and Post-Translationally Modified Peptides.
    Liu CL; Wang ZJ; Shi J; Yan ZY; Zhang GD; Jiao RH; Tan RX; Ge HM
    Angew Chem Int Ed Engl; 2024 Mar; 63(10):e202314046. PubMed ID: 38072825
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Aliphatic Ether Bond Formation Expands the Scope of Radical SAM Enzymes in Natural Product Biosynthesis.
    Clark KA; Bushin LB; Seyedsayamdost MR
    J Am Chem Soc; 2019 Jul; 141(27):10610-10615. PubMed ID: 31246011
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Expanded Sequence Space of Radical S-Adenosylmethionine-Dependent Enzymes Involved in Post-translational Macrocyclization.
    He BB; Cheng Z; Zhong Z; Gao Y; Liu H; Li YX
    Angew Chem Int Ed Engl; 2022 Nov; 61(48):e202212447. PubMed ID: 36199165
    [TBL] [Abstract][Full Text] [Related]  

  • 5. RiPP antibiotics: biosynthesis and engineering potential.
    Hudson GA; Mitchell DA
    Curr Opin Microbiol; 2018 Oct; 45():61-69. PubMed ID: 29533845
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Three Principles of Diversity-Generating Biosynthesis.
    Gu W; Schmidt EW
    Acc Chem Res; 2017 Oct; 50(10):2569-2576. PubMed ID: 28891639
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Ribosomally synthesized and post-translationally modified peptide natural products: new insights into the role of leader and core peptides during biosynthesis.
    Yang X; van der Donk WA
    Chemistry; 2013 Jun; 19(24):7662-77. PubMed ID: 23666908
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Bioinformatic Atlas of Radical SAM Enzyme-Modified RiPP Natural Products Reveals an Isoleucine-Tryptophan Crosslink.
    Clark KA; Seyedsayamdost MR
    J Am Chem Soc; 2022 Oct; 144(39):17876-17888. PubMed ID: 36128669
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Identification of a poly-cyclopropylglycine-containing peptide via bioinformatic mapping of radical S-adenosylmethionine enzymes.
    Kostenko A; Lien Y; Mendauletova A; Ngendahimana T; Novitskiy IM; Eaton SS; Latham JA
    J Biol Chem; 2022 May; 298(5):101881. PubMed ID: 35367210
    [TBL] [Abstract][Full Text] [Related]  

  • 10. New Insights into the Biosynthetic Logic of Ribosomally Synthesized and Post-translationally Modified Peptide Natural Products.
    Ortega MA; van der Donk WA
    Cell Chem Biol; 2016 Jan; 23(1):31-44. PubMed ID: 26933734
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A prevalent peptide-binding domain guides ribosomal natural product biosynthesis.
    Burkhart BJ; Hudson GA; Dunbar KL; Mitchell DA
    Nat Chem Biol; 2015 Aug; 11(8):564-70. PubMed ID: 26167873
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Radical S-Adenosylmethionine Enzymes Involved in RiPP Biosynthesis.
    Mahanta N; Hudson GA; Mitchell DA
    Biochemistry; 2017 Oct; 56(40):5229-5244. PubMed ID: 28895719
    [TBL] [Abstract][Full Text] [Related]  

  • 13. New Role for Radical SAM Enzymes in the Biosynthesis of Thio(seleno)oxazole RiPP Natural Products.
    Lewis JK; Jochimsen AS; Lefave SJ; Young AP; Kincannon WM; Roberts AG; Kieber-Emmons MT; Bandarian V
    Biochemistry; 2021 Nov; 60(45):3347-3361. PubMed ID: 34730336
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Marine Bacterial Ribosomal Peptides: Recent Genomics- and Synthetic Biology-Based Discoveries and Biosynthetic Studies.
    Sukmarini L
    Mar Drugs; 2022 Aug; 20(9):. PubMed ID: 36135733
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Guidelines for Determining the Structures of Radical SAM Enzyme-Catalyzed Modifications in the Biosynthesis of RiPP Natural Products.
    Bushin LB; Seyedsayamdost MR
    Methods Enzymol; 2018; 606():439-460. PubMed ID: 30097102
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Discovery of novel fungal RiPP biosynthetic pathways and their application for the development of peptide therapeutics.
    Vogt E; Künzler M
    Appl Microbiol Biotechnol; 2019 Jul; 103(14):5567-5581. PubMed ID: 31147756
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Structural and mechanistic basis for RiPP epimerization by a radical SAM enzyme.
    Kubiak X; Polsinelli I; Chavas LMG; Fyfe CD; Guillot A; Fradale L; Brewee C; Grimaldi S; Gerbaud G; Thureau A; Legrand P; Berteau O; Benjdia A
    Nat Chem Biol; 2024 Mar; 20(3):382-391. PubMed ID: 38158457
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The Biosynthetic Landscape of Triceptides Reveals Radical SAM Enzymes That Catalyze Cyclophane Formation on Tyr- and His-Containing Motifs.
    Sugiyama R; Suarez AFL; Morishita Y; Nguyen TQN; Tooh YW; Roslan MNHB; Lo Choy J; Su Q; Goh WY; Gunawan GA; Wong FT; Morinaka BI
    J Am Chem Soc; 2022 Jul; 144(26):11580-11593. PubMed ID: 35729768
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Recent advances in the biosynthesis of ribosomally synthesized and posttranslationally modified peptides of fungal origin.
    Ozaki T; Minami A; Oikawa H
    J Antibiot (Tokyo); 2023 Jan; 76(1):3-13. PubMed ID: 36424516
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Recent Advances in the Discovery and Biosynthetic Study of Eukaryotic RiPP Natural Products.
    Luo S; Dong SH
    Molecules; 2019 Apr; 24(8):. PubMed ID: 31003555
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.