These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
142 related articles for article (PubMed ID: 38047546)
41. Advances in Graphene-Based Electrode for Triboelectric Nanogenerator. Xie B; Guo Y; Chen Y; Zhang H; Xiao J; Hou M; Liu H; Ma L; Chen X; Wong C Nanomicro Lett; 2024 Sep; 17(1):17. PubMed ID: 39327371 [TBL] [Abstract][Full Text] [Related]
42. A Tuning-Fork Triboelectric Nanogenerator with Frequency Multiplication for Efficient Mechanical Energy Harvesting. Liu N; Liu D; Gao Y; Li S; Zhou L; Zhao Z; Cui S; Liu L; Wang ZL; Wang J Small Methods; 2022 May; 6(5):e2200066. PubMed ID: 35352491 [TBL] [Abstract][Full Text] [Related]
43. Rationally Improved Surface Charge Density of Triboelectric Nanogenerator with TiO Venkatesan M; Chandrasekar J; Hsu YC; Sun TW; Li PY; King XT; Chung MA; Chung RJ; Lee WY; Zhou Y; Lin JH; Kuo CC Adv Sci (Weinh); 2024 Sep; 11(34):e2404019. PubMed ID: 38981048 [TBL] [Abstract][Full Text] [Related]
44. A stretchable triboelectric nanogenerator made of silver-coated glass microspheres for human motion energy harvesting and self-powered sensing applications. Li H; Zhang Y; Wu Y; Zhao H; Wang W; He X; Zheng H Beilstein J Nanotechnol; 2021; 12():402-412. PubMed ID: 34012760 [TBL] [Abstract][Full Text] [Related]
45. Achieving Ultrahigh Output Energy Density of Triboelectric Nanogenerators in High-Pressure Gas Environment. Fu J; Xu G; Li C; Xia X; Guan D; Li J; Huang Z; Zi Y Adv Sci (Weinh); 2020 Dec; 7(24):2001757. PubMed ID: 33344120 [TBL] [Abstract][Full Text] [Related]
46. High Performance Rotating Triboelectric Nanogenerator with Coaxial Rolling Charge Pump Strategy. Hao C; Qi B; Wang Z; Cai M; Cui J; Zheng Y Micromachines (Basel); 2023 Nov; 14(12):. PubMed ID: 38138329 [TBL] [Abstract][Full Text] [Related]
47. Research on Wave Energy Harvesting Technology of Annular Triboelectric Nanogenerator Based on Multi-Electrode Structure. Wang CJ; Meng F; Fu Q; Fan CH; Cui L Micromachines (Basel); 2022 Sep; 13(10):. PubMed ID: 36295972 [TBL] [Abstract][Full Text] [Related]
48. An Array of Flag-Type Triboelectric Nanogenerators for Harvesting Wind Energy. Zhao Z; Wei B; Wang Y; Huang X; Li B; Lin F; Ma L; Zhang Q; Zou Y; Yang F; Pang H; Xu J; Pan X Nanomaterials (Basel); 2022 Feb; 12(4):. PubMed ID: 35215049 [TBL] [Abstract][Full Text] [Related]
49. Self-powered TENG probe for scanning surface charge distribution. Bugti S; Kasi AK; Ullah S; Kasi JK Nanotechnology; 2023 Nov; 35(6):. PubMed ID: 37997892 [TBL] [Abstract][Full Text] [Related]
50. A Portable Triboelectric Nanogenerator Based on Dehydrated Nopal Powder for Powering Electronic Devices. Elvira-Hernández EA; Nava-Galindo OI; Martínez-Lara EK; Delgado-Alvarado E; López-Huerta F; De León A; Gallardo-Vega C; Herrera-May AL Sensors (Basel); 2023 Apr; 23(9):. PubMed ID: 37177398 [TBL] [Abstract][Full Text] [Related]
51. Triboelectric Nanogenerator for Droplet Energy Harvesting Based on Hydrophobic Composites. Zheng Y; Li J; Xu T; Cui H; Li X Materials (Basel); 2023 Aug; 16(15):. PubMed ID: 37570143 [TBL] [Abstract][Full Text] [Related]
52. High-Output Lotus-Leaf-Bionic Triboelectric Nanogenerators Based on 2D MXene for Health Monitoring of Human Feet. Wang L; Xu H; Huang F; Tao X; Ouyang Y; Zhou Y; Mo X Nanomaterials (Basel); 2022 Sep; 12(18):. PubMed ID: 36145008 [TBL] [Abstract][Full Text] [Related]
53. Antibacterial Composite Film-Based Triboelectric Nanogenerator for Harvesting Walking Energy. Gu GQ; Han CB; Tian JJ; Lu CX; He C; Jiang T; Li Z; Wang ZL ACS Appl Mater Interfaces; 2017 Apr; 9(13):11882-11888. PubMed ID: 28299934 [TBL] [Abstract][Full Text] [Related]
54. Boosting Output Performance of Sliding Mode Triboelectric Nanogenerator by Shielding Layer and Shrouded-Tribo-Area Optimized Ternary Electrification Layered Architecture. An S; Fu S; He W; Li G; Xing P; Du Y; Wang J; Zhou S; Pu X; Hu C Small; 2023 Nov; 19(45):e2303277. PubMed ID: 37434035 [TBL] [Abstract][Full Text] [Related]
55. Structural and Chemical Modifications Towards High-Performance of Triboelectric Nanogenerators. Nurmakanov Y; Kalimuldina G; Nauryzbayev G; Adair D; Bakenov Z Nanoscale Res Lett; 2021 Jul; 16(1):122. PubMed ID: 34328566 [TBL] [Abstract][Full Text] [Related]
56. Unveiling Peritoneum Membrane for a Robust Triboelectric Nanogenerator. Kamilya T; Sarkar PK; Acharya S ACS Omega; 2019 Oct; 4(18):17684-17690. PubMed ID: 31681874 [TBL] [Abstract][Full Text] [Related]
57. Largely Improving the Robustness and Lifetime of Triboelectric Nanogenerators through Automatic Transition between Contact and Noncontact Working States. Li S; Wang S; Zi Y; Wen Z; Lin L; Zhang G; Wang ZL ACS Nano; 2015 Jul; 9(7):7479-87. PubMed ID: 26098784 [TBL] [Abstract][Full Text] [Related]
58. Kármán Vortex Street Driven Membrane Triboelectric Nanogenerator for Enhanced Ultra-Low Speed Wind Energy Harvesting and Active Gas Flow Sensing. Li W; Lu L; Fu X; Zhang C; Loos K; Pei Y ACS Appl Mater Interfaces; 2022 Nov; 14(45):51018-51028. PubMed ID: 36322176 [TBL] [Abstract][Full Text] [Related]
59. New Self-Healing Triboelectric Nanogenerator Based on Simultaneous Repair Friction Layer and Conductive Layer. Luo N; Feng Y; Wang D; Zheng Y; Ye Q; Zhou F; Liu W ACS Appl Mater Interfaces; 2020 Jul; 12(27):30390-30398. PubMed ID: 32530268 [TBL] [Abstract][Full Text] [Related]
60. Harsh Environmental-Tolerant and High-Performance Triboelectric Nanogenerator Based on Nanofiber/Microsphere Hybrid Membranes. Sun D; Cao R; Wu H; Li X; Yu H; Guo L Materials (Basel); 2023 Jan; 16(2):. PubMed ID: 36676298 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]