These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
142 related articles for article (PubMed ID: 38047546)
61. A durable non-contact reciprocated triboelectric nanogenerator for low-frequency vibration energy harvesting. Liang G; Zhao D; Yan Z; Sun W; Wang Z; Tan T Rev Sci Instrum; 2023 Nov; 94(11):. PubMed ID: 37934036 [TBL] [Abstract][Full Text] [Related]
62. An Ultrarobust and High-Performance Rotational Hydrodynamic Triboelectric Nanogenerator Enabled by Automatic Mode Switching and Charge Excitation. Fu S; He W; Tang Q; Wang Z; Liu W; Li Q; Shan C; Long L; Hu C; Liu H Adv Mater; 2022 Jan; 34(2):e2105882. PubMed ID: 34617342 [TBL] [Abstract][Full Text] [Related]
63. Skin-Contact Triboelectric Nanogenerator for Energy Harvesting and Motion Sensing: Principles, Challenges, and Perspectives. Matin Nazar A; Mohsenian R; Rayegani A; Shadfar M; Jiao P Biosensors (Basel); 2023 Sep; 13(9):. PubMed ID: 37754106 [TBL] [Abstract][Full Text] [Related]
65. Single-electrode-based rotating triboelectric nanogenerator for harvesting energy from tires. Zhang H; Yang Y; Zhong X; Su Y; Zhou Y; Hu C; Wang ZL ACS Nano; 2014 Jan; 8(1):680-9. PubMed ID: 24303805 [TBL] [Abstract][Full Text] [Related]
66. Flexible triboelectric nanogenerator based on polyester conductive cloth for biomechanical energy harvesting and self-powered sensors. Zhao J; Wang Y; Song X; Zhou A; Ma Y; Wang X Nanoscale; 2021 Nov; 13(43):18363-18373. PubMed ID: 34723308 [TBL] [Abstract][Full Text] [Related]
67. Single-Electrode Triboelectric Nanogenerators Based on Ionic Conductive Hydrogel for Mechanical Energy Harvester and Smart Touch Sensor Applications. Patnam H; Graham SA; Manchi P; Paranjape MV; Yu JS ACS Appl Mater Interfaces; 2023 Apr; 15(13):16768-16777. PubMed ID: 36973637 [TBL] [Abstract][Full Text] [Related]
68. On the mechanism and optimization of triboelectric nanogenerators. Zhang A; Liu W; Zhang Y Nanotechnology; 2015 Oct; 26(42):425401. PubMed ID: 26422792 [TBL] [Abstract][Full Text] [Related]
69. A high-performance triboelectric nanogenerator with improved output stability by construction of biomimetic superhydrophobic nanoporous fibers. Zhang JH; Li Y; Hao X Nanotechnology; 2020 May; 31(21):215401. PubMed ID: 32018228 [TBL] [Abstract][Full Text] [Related]
70. Selection rules of triboelectric materials for direct-current triboelectric nanogenerator. Zhao Z; Zhou L; Li S; Liu D; Li Y; Gao Y; Liu Y; Dai Y; Wang J; Wang ZL Nat Commun; 2021 Aug; 12(1):4686. PubMed ID: 34344892 [TBL] [Abstract][Full Text] [Related]
71. Leverage Surface Chemistry for High-Performance Triboelectric Nanogenerators. Xu J; Zou Y; Nashalian A; Chen J Front Chem; 2020; 8():577327. PubMed ID: 33330365 [TBL] [Abstract][Full Text] [Related]
72. Highly Flexible Triboelectric Nanogenerator Using Porous Carbon Nanotube Composites. Shin J; Ji S; Cho H; Park J Polymers (Basel); 2023 Feb; 15(5):. PubMed ID: 36904375 [TBL] [Abstract][Full Text] [Related]
73. Cost-Effective Copper⁻Nickel-Based Triboelectric Nanogenerator for Corrosion-Resistant and High-Output Self-Powered Wearable Electronic Systems. Xia K; Xu Z; Zhu Z; Zhang H; Nie Y Nanomaterials (Basel); 2019 May; 9(5):. PubMed ID: 31060301 [TBL] [Abstract][Full Text] [Related]
74. Nanostructured versus flat compact electrode for triboelectric nanogenerators at high humidity. Karimi M; Seddighi S; Mohammadpour R Sci Rep; 2021 Aug; 11(1):16191. PubMed ID: 34376736 [TBL] [Abstract][Full Text] [Related]
75. Enhancing the Performance of a Stretchable and Transparent Triboelectric Nanogenerator by Optimizing the Hydrogel Ionic Electrode Property. Jing X; Li H; Mi HY; Feng PY; Tao X; Liu Y; Liu C; Shen C ACS Appl Mater Interfaces; 2020 May; 12(20):23474-23483. PubMed ID: 32352755 [TBL] [Abstract][Full Text] [Related]
76. Novel 3D Printed Vortex-like Flexible Roller-Compacted Triboelectric Nanogenerator for Self-Powered Electrochemical Degradation of Organic Contaminants. Liu S; Liu Y; Chen Y; Wang S; Men C; Gao S ACS Appl Mater Interfaces; 2022 Apr; 14(15):17426-17433. PubMed ID: 35394737 [TBL] [Abstract][Full Text] [Related]
77. Assessment of Triboelectric Nanogenerators for Electric Field Energy Harvesting. Menéndez O; Villacrés J; Prado A; Vásconez JP; Auat-Cheein F Sensors (Basel); 2024 Apr; 24(8):. PubMed ID: 38676124 [TBL] [Abstract][Full Text] [Related]
78. Self-Sterilized Flexible Single-Electrode Triboelectric Nanogenerator for Energy Harvesting and Dynamic Force Sensing. Guo H; Li T; Cao X; Xiong J; Jie Y; Willander M; Cao X; Wang N; Wang ZL ACS Nano; 2017 Jan; 11(1):856-864. PubMed ID: 28056170 [TBL] [Abstract][Full Text] [Related]
79. Air-gap embedded triboelectric nanogenerator Kim I; Roh H; Choi W; Kim D Nanoscale; 2021 May; 13(19):8837-8847. PubMed ID: 33950055 [TBL] [Abstract][Full Text] [Related]
80. Improving the Performance of Polydimethylsiloxane-Based Triboelectric Nanogenerators by Introducing CdS Particles into the Polydimethylsiloxane Layer. Mao J; Seo S Nanomaterials (Basel); 2023 Nov; 13(22):. PubMed ID: 37999297 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]