These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

180 related articles for article (PubMed ID: 38047813)

  • 1. Improving Enzyme Fitness with Machine Learning.
    Patsch D; Buller R
    Chimia (Aarau); 2023 Mar; 77(3):116-121. PubMed ID: 38047813
    [TBL] [Abstract][Full Text] [Related]  

  • 2. High-throughput screening, next generation sequencing and machine learning: advanced methods in enzyme engineering.
    Vanella R; Kovacevic G; Doffini V; Fernández de Santaella J; Nash MA
    Chem Commun (Camb); 2022 Feb; 58(15):2455-2467. PubMed ID: 35107442
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Adaptive machine learning for protein engineering.
    Hie BL; Yang KK
    Curr Opin Struct Biol; 2022 Feb; 72():145-152. PubMed ID: 34896756
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Machine learning-assisted enzyme engineering.
    Siedhoff NE; Schwaneberg U; Davari MD
    Methods Enzymol; 2020; 643():281-315. PubMed ID: 32896285
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Data-Driven Protein Engineering for Improving Catalytic Activity and Selectivity.
    Ao YF; Dörr M; Menke MJ; Born S; Heuson E; Bornscheuer UT
    Chembiochem; 2024 Feb; 25(3):e202300754. PubMed ID: 38029350
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Data-driven enzyme engineering to identify function-enhancing enzymes.
    Jiang Y; Ran X; Yang ZJ
    Protein Eng Des Sel; 2023 Jan; 36():. PubMed ID: 36214500
    [TBL] [Abstract][Full Text] [Related]  

  • 7. PyPEF-An Integrated Framework for Data-Driven Protein Engineering.
    Siedhoff NE; Illig AM; Schwaneberg U; Davari MD
    J Chem Inf Model; 2021 Jul; 61(7):3463-3476. PubMed ID: 34260225
    [TBL] [Abstract][Full Text] [Related]  

  • 8. In-depth analysis of biocatalysts by microfluidics: An emerging source of data for machine learning.
    Vasina M; Kovar D; Damborsky J; Ding Y; Yang T; deMello A; Mazurenko S; Stavrakis S; Prokop Z
    Biotechnol Adv; 2023 Sep; 66():108171. PubMed ID: 37150331
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Enhancing Machine-Learning Prediction of Enzyme Catalytic Temperature Optima through Amino Acid Conservation Analysis.
    Cao Y; Qiu B; Ning X; Fan L; Qin Y; Yu D; Yang C; Ma H; Liao X; You C
    Int J Mol Sci; 2024 Jun; 25(11):. PubMed ID: 38892439
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Combining chemistry and protein engineering for new-to-nature biocatalysis.
    Miller DC; Athavale SV; Arnold FH
    Nat Synth; 2022 Jan; 1(1):18-23. PubMed ID: 35415721
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Machine-learning-guided directed evolution for protein engineering.
    Yang KK; Wu Z; Arnold FH
    Nat Methods; 2019 Aug; 16(8):687-694. PubMed ID: 31308553
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Engineering proteinase K using machine learning and synthetic genes.
    Liao J; Warmuth MK; Govindarajan S; Ness JE; Wang RP; Gustafsson C; Minshull J
    BMC Biotechnol; 2007 Mar; 7():16. PubMed ID: 17386103
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Machine learning to navigate fitness landscapes for protein engineering.
    Freschlin CR; Fahlberg SA; Romero PA
    Curr Opin Biotechnol; 2022 Jun; 75():102713. PubMed ID: 35413604
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Machine learning for enzyme engineering, selection and design.
    Feehan R; Montezano D; Slusky JSG
    Protein Eng Des Sel; 2021 Feb; 34():. PubMed ID: 34296736
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Algorithm-aided engineering of aliphatic halogenase WelO5* for the asymmetric late-stage functionalization of soraphens.
    Büchler J; Malca SH; Patsch D; Voss M; Turner NJ; Bornscheuer UT; Allemann O; Le Chapelain C; Lumbroso A; Loiseleur O; Buller R
    Nat Commun; 2022 Jan; 13(1):371. PubMed ID: 35042883
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Navigating the landscape of enzyme design: from molecular simulations to machine learning.
    Zhou J; Huang M
    Chem Soc Rev; 2024 Jul; ():. PubMed ID: 38990263
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Machine learning for metabolic engineering: A review.
    Lawson CE; Martí JM; Radivojevic T; Jonnalagadda SVR; Gentz R; Hillson NJ; Peisert S; Kim J; Simmons BA; Petzold CJ; Singer SW; Mukhopadhyay A; Tanjore D; Dunn JG; Garcia Martin H
    Metab Eng; 2021 Jan; 63():34-60. PubMed ID: 33221420
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Protein Engineering Strategies for Tailoring the Physical and Catalytic Properties of Enzymes for Defined Industrial Applications.
    Kumar R; Kumar A; Kaur J
    Curr Protein Pept Sci; 2023; 24(2):113-129. PubMed ID: 36627776
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Design of novel enzyme biocatalysts for industrial bioprocess: Harnessing the power of protein engineering, high throughput screening and synthetic biology.
    Madhavan A; Arun KB; Binod P; Sirohi R; Tarafdar A; Reshmy R; Kumar Awasthi M; Sindhu R
    Bioresour Technol; 2021 Apr; 325():124617. PubMed ID: 33450638
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Excelzyme: A Swiss University-Industry Collaboration for Accelerated Biocatalyst Development.
    Honda Malca S; Stockinger P; Duss N; Milbredt D; Iding H; Buller R
    Chimia (Aarau); 2024 Mar; 78(3):108-117. PubMed ID: 38547011
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.