These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

148 related articles for article (PubMed ID: 38048070)

  • 1. Magnetic Yeast Glucan Particles for Antibody-Free Separation of Viable Macrophages from
    Krejčová G; Saloň I; Klimša V; Ulbrich P; Aysan AB; Bajgar A; Štěpánek F
    ACS Biomater Sci Eng; 2024 Jan; 10(1):355-364. PubMed ID: 38048070
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Yeast glucan particles enable intracellular protein delivery in Drosophila without compromising the immune system.
    Bajgar A; Saloň I; Krejčová G; DoleŽal T; Jindra M; Štěpánek F
    Biomater Sci; 2019 Nov; 7(11):4708-4719. PubMed ID: 31565713
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Recognition of yeast cell wall glucan by Atlantic salmon (Salmo salar L.) macrophages.
    Engstad RE; Robertsen B
    Dev Comp Immunol; 1993; 17(4):319-30. PubMed ID: 8375567
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Preparation of microparticulate beta-glucan from Saccharomyces cerevisiae for use in immune potentiation.
    Hunter KW; Gault RA; Berner MD
    Lett Appl Microbiol; 2002; 35(4):267-71. PubMed ID: 12358685
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Characteristics of the beta-glucan receptor of murine macrophages.
    Goldman R
    Exp Cell Res; 1988 Feb; 174(2):481-90. PubMed ID: 2828085
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Phagocytosis of unopsonized zymosan particles by trypsin-sensitive and beta-glucan-inhibitable receptors on bone marrow-derived murine macrophages.
    Kadish JL; Choi CC; Czop JK
    Immunol Res; 1986; 5(2):129-38. PubMed ID: 3020136
    [TBL] [Abstract][Full Text] [Related]  

  • 7. High-level TNF-alpha secretion and macrophage activity with soluble beta-glucans from Saccharomyces cerevisiae.
    Lee DY; Ji IH; Chang HI; Kim CW
    Biosci Biotechnol Biochem; 2002 Feb; 66(2):233-8. PubMed ID: 11999393
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Specificity of a beta-glucan receptor on macrophages from Atlantic salmon (Salmo salar L.).
    Engstad RE; Robertsen B
    Dev Comp Immunol; 1994; 18(5):397-408. PubMed ID: 7698364
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Encapsulation of poorly soluble drugs in yeast glucan particles by spray drying improves dispersion and dissolution properties.
    Ruphuy G; Saloň I; Tomas J; Šalamúnová P; Hanuš J; Štěpánek F
    Int J Pharm; 2020 Feb; 576():118990. PubMed ID: 31899318
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Yeast glucan particles: An express train for oral targeted drug delivery systems.
    Yang F; Shang S; Qi M; Xiang Y; Wang L; Wang X; Lin T; Hao D; Chen J; Liu J; Wu Q
    Int J Biol Macromol; 2023 Dec; 253(Pt 5):127131. PubMed ID: 37776921
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Drying enhances immunoactivity of spent brewer's yeast cell wall β-D-glucans.
    Liepins J; Kovačova E; Shvirksts K; Grube M; Rapoport A; Kogan G
    J Biotechnol; 2015 Jul; 206():12-6. PubMed ID: 25858155
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Mechanochemical phosphorylation and solubilisation of β-D-glucan from yeast Saccharomyces cerevisiae and its biological activities.
    Shi F; Shi J; Li Y
    PLoS One; 2014; 9(7):e103494. PubMed ID: 25075740
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Macrophage internalization of fungal beta-glucans is not necessary for initiation of related inflammatory responses.
    McCann F; Carmona E; Puri V; Pagano RE; Limper AH
    Infect Immun; 2005 Oct; 73(10):6340-9. PubMed ID: 16177305
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Both mannose and beta-glucan receptors are involved in phagocytosis of unopsonized, heat-killed Saccharomyces cerevisiae by murine macrophages.
    Giaimis J; Lombard Y; Fonteneau P; Muller CD; Levy R; Makaya-Kumba M; Lazdins J; Poindron P
    J Leukoc Biol; 1993 Dec; 54(6):564-71. PubMed ID: 8245708
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Retention of Saccharomyces cerevisiae cell wall proteins through a phosphodiester-linked beta-1,3-/beta-1,6-glucan heteropolymer.
    Kapteyn JC; Montijn RC; Vink E; de la Cruz J; Llobell A; Douwes JE; Shimoi H; Lipke PN; Klis FM
    Glycobiology; 1996 Apr; 6(3):337-45. PubMed ID: 8724141
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Lipid content of microparticulate (1-->3)-beta-D-glucan isolated from Saccharomyces cerevisiae.
    Müller A; Mayberry W; Acuff R; Thedford S; Browder W; Williams D
    Microbios; 1994; 79(321):253-61. PubMed ID: 7837997
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Purification of soluble beta-glucan with immune-enhancing activity from the cell wall of yeast.
    Lee JN; Lee DY; Ji IH; Kim GE; Kim HN; Sohn J; Kim S; Kim CW
    Biosci Biotechnol Biochem; 2001 Apr; 65(4):837-41. PubMed ID: 11388461
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Yeast glucan particles activate murine resident macrophages to secrete proinflammatory cytokines via MyD88- and Syk kinase-dependent pathways.
    Li B; Cramer D; Wagner S; Hansen R; King C; Kakar S; Ding C; Yan J
    Clin Immunol; 2007 Aug; 124(2):170-81. PubMed ID: 17572156
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Isolation of soluble yeast beta-glucans that inhibit human monocyte phagocytosis mediated by beta-glucan receptors.
    Janusz MJ; Austen KF; Czop JK
    J Immunol; 1986 Nov; 137(10):3270-6. PubMed ID: 3021849
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Differential pathways regulating innate and adaptive antitumor immune responses by particulate and soluble yeast-derived β-glucans.
    Qi C; Cai Y; Gunn L; Ding C; Li B; Kloecker G; Qian K; Vasilakos J; Saijo S; Iwakura Y; Yannelli JR; Yan J
    Blood; 2011 Jun; 117(25):6825-36. PubMed ID: 21531981
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.