These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

116 related articles for article (PubMed ID: 38048275)

  • 1. Transparent Patternable Large-Area Graphene p-n Junctions by Photoinduced Electron Doping.
    Kirihara K; Okigawa Y; Ishihara M; Hasegawa M; Mukaida M; Horike S; Wang Y; Wei Q
    ACS Appl Mater Interfaces; 2024 Jan; 16(1):1198-1205. PubMed ID: 38048275
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Spontaneous and strong multi-layer graphene n-doping on soda-lime glass and its application in graphene-semiconductor junctions.
    Dissanayake DM; Ashraf A; Dwyer D; Kisslinger K; Zhang L; Pang Y; Efstathiadis H; Eisaman MD
    Sci Rep; 2016 Feb; 6():21070. PubMed ID: 26867673
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Photocurrent generation in lateral graphene p-n junction created by electron-beam irradiation.
    Yu X; Shen Y; Liu T; Wu TT; Jie Wang Q
    Sci Rep; 2015 Jul; 5():12014. PubMed ID: 26152225
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Modulation-doped growth of mosaic graphene with single-crystalline p-n junctions for efficient photocurrent generation.
    Yan K; Wu D; Peng H; Jin L; Fu Q; Bao X; Liu Z
    Nat Commun; 2012; 3():1280. PubMed ID: 23232410
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Direct laser writing of air-stable p-n junctions in graphene.
    Seo BH; Youn J; Shim M
    ACS Nano; 2014 Sep; 8(9):8831-6. PubMed ID: 25075554
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Photoinduced doping in heterostructures of graphene and boron nitride.
    Ju L; Velasco J; Huang E; Kahn S; Nosiglia C; Tsai HZ; Yang W; Taniguchi T; Watanabe K; Zhang Y; Zhang G; Crommie M; Zettl A; Wang F
    Nat Nanotechnol; 2014 May; 9(5):348-52. PubMed ID: 24727687
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Atomic-Scale Characterization of Graphene p-n Junctions for Electron-Optical Applications.
    Zhou X; Kerelsky A; Elahi MM; Wang D; Habib KMM; Sajjad RN; Agnihotri P; Lee JU; Ghosh AW; Ross FM; Pasupathy AN
    ACS Nano; 2019 Feb; 13(2):2558-2566. PubMed ID: 30689949
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Large-area, transparent, and flexible infrared photodetector fabricated using P-N junctions formed by N-doping chemical vapor deposition grown graphene.
    Liu N; Tian H; Schwartz G; Tok JB; Ren TL; Bao Z
    Nano Lett; 2014 Jul; 14(7):3702-8. PubMed ID: 24927382
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Four-terminal magneto-transport in graphene p-n junctions created by spatially selective doping.
    Lohmann T; von Klitzing K; Smet JH
    Nano Lett; 2009 May; 9(5):1973-9. PubMed ID: 19361173
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Enhancing the conductivity of transparent graphene films via doping.
    Kim KK; Reina A; Shi Y; Park H; Li LJ; Lee YH; Kong J
    Nanotechnology; 2010 Jul; 21(28):285205. PubMed ID: 20585167
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Lithographically Patterned Functional Polymer-Graphene Hybrids for Nanoscale Electronics.
    Alon H; Stern C; Kirshner M; Sinai O; Wasserman M; Selhorst R; Gasper R; Ramasubramaniam A; Emrick T; Naveh D
    ACS Nano; 2018 Feb; 12(2):1928-1933. PubMed ID: 29378391
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Ultra-clean high-mobility graphene on technologically relevant substrates.
    Tyagi A; Mišeikis V; Martini L; Forti S; Mishra N; Gebeyehu ZM; Giambra MA; Zribi J; Frégnaux M; Aureau D; Romagnoli M; Beltram F; Coletti C
    Nanoscale; 2022 Feb; 14(6):2167-2176. PubMed ID: 35080556
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Photosensitive Graphene P-N Junction Transistors and Ternary Inverters.
    Kim JB; Li J; Choi Y; Whang D; Hwang E; Cho JH
    ACS Appl Mater Interfaces; 2018 Apr; 10(15):12897-12903. PubMed ID: 29553702
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Ultraviolet-light-driven doping modulation in chemical vapor deposition grown graphene.
    Iqbal MZ; Iqbal MW; Khan MF; Eom J
    Phys Chem Chem Phys; 2015 Aug; 17(32):20551-6. PubMed ID: 26198203
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Dry transfer of chemical-vapor-deposition-grown graphene onto liquid-sensitive surfaces for tunnel junction applications.
    Feng Y; Chen K
    Nanotechnology; 2015 Jan; 26(3):035302. PubMed ID: 25549272
    [TBL] [Abstract][Full Text] [Related]  

  • 16. On-demand doping of graphene by stamping with a chemically functionalized rubber lens.
    Choi Y; Sun Q; Hwang E; Lee Y; Lee S; Cho JH
    ACS Nano; 2015 Apr; 9(4):4354-61. PubMed ID: 25817481
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Highly Efficient
    Seo YM; Jang W; Gu T; Whang D
    Materials (Basel); 2020 May; 13(9):. PubMed ID: 32397067
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Focusing on energy and optoelectronic applications: a journey for graphene and graphene oxide at large scale.
    Wan X; Huang Y; Chen Y
    Acc Chem Res; 2012 Apr; 45(4):598-607. PubMed ID: 22280410
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Spatial Control of Laser-Induced Doping Profiles in Graphene on Hexagonal Boron Nitride.
    Neumann C; Rizzi L; Reichardt S; Terrés B; Khodkov T; Watanabe K; Taniguchi T; Beschoten B; Stampfer C
    ACS Appl Mater Interfaces; 2016 Apr; 8(14):9377-83. PubMed ID: 26986938
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Gate-Tunable Dirac Point of Molecular Doped Graphene.
    Solís-Fernández P; Okada S; Sato T; Tsuji M; Ago H
    ACS Nano; 2016 Feb; 10(2):2930-9. PubMed ID: 26812353
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.