These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

116 related articles for article (PubMed ID: 38048275)

  • 41. Photoinduced Dedoping of Conducting Polymers: An Approach to Precise Control of the Carrier Concentration and Understanding Transport Properties.
    Wei Q; Mukaida M; Kirihara K; Naitoh Y; Ishida T
    ACS Appl Mater Interfaces; 2016 Jan; 8(3):2054-60. PubMed ID: 26734776
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Exploring and rationalising effective n-doping of large area CVD-graphene by NH3.
    Bianco GV; Losurdo M; Giangregorio MM; Capezzuto P; Bruno G
    Phys Chem Chem Phys; 2014 Feb; 16(8):3632-9. PubMed ID: 24413594
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Dynamic modulation of electronic properties of graphene by localized carbon doping using focused electron beam induced deposition.
    Kim S; Russell M; Henry M; Kim SS; Naik RR; Voevodin AA; Jang SS; Tsukruk VV; Fedorov AG
    Nanoscale; 2015 Sep; 7(36):14946-52. PubMed ID: 26302897
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Hybrid Doping of Few-Layer Graphene via a Combination of Intercalation and Surface Doping.
    Mansour AE; Kirmani AR; Barlow S; Marder SR; Amassian A
    ACS Appl Mater Interfaces; 2017 Jun; 9(23):20020-20028. PubMed ID: 28535037
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Novel BODIPY-Based Photobase Generators for Photoinduced Polymerization.
    Yu S; Reddy O; Abaci A; Ai Y; Li Y; Chen H; Guvendiren M; Belfield KD; Zhang Y
    ACS Appl Mater Interfaces; 2023 Sep; 15(38):45281-45289. PubMed ID: 37708358
    [TBL] [Abstract][Full Text] [Related]  

  • 46. High Mobility of Graphene-Based Flexible Transparent Field Effect Transistors Doped with TiO2 and Nitrogen-Doped TiO2.
    Wu YH; Tseng PY; Hsieh PY; Chou HT; Tai NH
    ACS Appl Mater Interfaces; 2015 May; 7(18):9453-61. PubMed ID: 25905566
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Highly Stable and Effective Doping of Graphene by Selective Atomic Layer Deposition of Ruthenium.
    Kim M; Kim KJ; Lee SJ; Kim HM; Cho SY; Kim MS; Kim SH; Kim KB
    ACS Appl Mater Interfaces; 2017 Jan; 9(1):701-709. PubMed ID: 27936584
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Self-encapsulated doping of n-type graphene transistors with extended air stability.
    Ho PH; Yeh YC; Wang DY; Li SS; Chen HA; Chung YH; Lin CC; Wang WH; Chen CW
    ACS Nano; 2012 Jul; 6(7):6215-21. PubMed ID: 22681443
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Enhanced Thermopower of Saturated Molecules by Noncovalent Anchor-Induced Electron Doping of Single-Layer Graphene Electrode.
    Park S; Kim HR; Kim J; Hong BH; Yoon HJ
    Adv Mater; 2021 Oct; 33(41):e2103177. PubMed ID: 34453364
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Inverse transfer method using polymers with various functional groups for controllable graphene doping.
    Lee SK; Yang JW; Kim HH; Jo SB; Kang B; Bong H; Lee HC; Lee G; Kim KS; Cho K
    ACS Nano; 2014 Aug; 8(8):7968-75. PubMed ID: 25050634
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Designed CVD growth of graphene via process engineering.
    Yan K; Fu L; Peng H; Liu Z
    Acc Chem Res; 2013 Oct; 46(10):2263-74. PubMed ID: 23869401
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Charge Transfer Dynamics of Doped Graphene Electrodes for Organic Light-Emitting Diodes.
    Park IJ; Kim TI; Choi SY
    ACS Appl Mater Interfaces; 2022 Sep; 14(38):43907-43916. PubMed ID: 36123321
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Enhancement Effect of the C
    Xia ZX; Tian GS; Xian-Yu WX; Huang X; Fu P; Zhang YF; Du FP
    ACS Appl Mater Interfaces; 2022 Dec; 14(49):54969-54980. PubMed ID: 36469489
    [TBL] [Abstract][Full Text] [Related]  

  • 54. A uniform stable P-type graphene doping method with a gold etching process.
    Yao Y; Peng SA; Huang XN; Zhang DY; Shi JY; Jin Z
    Nanotechnology; 2019 Oct; 30(40):405205. PubMed ID: 31261138
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Tunable doping of graphene nanoribbon arrays by chemical functionalization.
    Solís-Fernández P; Bissett MA; Tsuji M; Ago H
    Nanoscale; 2015 Feb; 7(8):3572-80. PubMed ID: 25630426
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Investigation of electronic properties of chemical vapor deposition grown single layer graphene
    Singh AK; Chaudhary V; Singh AK; Sinha SRP
    RSC Adv; 2021 Jan; 11(5):3096-3103. PubMed ID: 35747079
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Solution-Processed n-Type Graphene Doping for Cathode in Inverted Polymer Light-Emitting Diodes.
    Kwon SJ; Han TH; Kim YH; Ahmed T; Seo HK; Kim H; Kim DJ; Xu W; Hong BH; Zhu JX; Lee TW
    ACS Appl Mater Interfaces; 2018 Feb; 10(5):4874-4881. PubMed ID: 29323479
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Tuning the electrical and optical properties of graphene by ozone treatment for patterning monolithic transparent electrodes.
    Yuan J; Ma LP; Pei S; Du J; Su Y; Ren W; Cheng HM
    ACS Nano; 2013 May; 7(5):4233-41. PubMed ID: 23578259
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Electrically and Optically Tunable Responses in Graphene/Transition-Metal-Dichalcogenide Heterostructures.
    Zhao M; Song P; Teng J
    ACS Appl Mater Interfaces; 2018 Dec; 10(50):44102-44108. PubMed ID: 30479118
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Reduced Graphene Oxide/Amorphous Carbon P-N Junctions: Nanosecond Laser Patterning.
    Gupta S; Narayan J
    ACS Appl Mater Interfaces; 2019 Jul; 11(27):24318-24330. PubMed ID: 31184475
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.