These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

116 related articles for article (PubMed ID: 38048275)

  • 61. Efficient photoinduced charge accumulation in reduced graphene oxide coupled with titania nanosheets to show highly enhanced and persistent conductance.
    Cai X; Sakai N; Ozawa TC; Funatsu A; Ma R; Ebina Y; Sasaki T
    ACS Appl Mater Interfaces; 2015 Jun; 7(21):11436-43. PubMed ID: 25945510
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Strong and efficient doping of monolayer MoS
    Melnikova-Kominkova Z; Jurkova K; Vales V; Drogowska-Horná K; Frank O; Kalbac M
    Phys Chem Chem Phys; 2019 Nov; 21(46):25700-25706. PubMed ID: 31720599
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Creating graphene p-n junctions using self-assembled monolayers.
    Sojoudi H; Baltazar J; Tolbert LM; Henderson CL; Graham S
    ACS Appl Mater Interfaces; 2012 Sep; 4(9):4781-6. PubMed ID: 22909428
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Plasma-Doped Si Nanosheets for Transistor and
    Lee J; Kwon J; Seo D; Na J; Park S; Lee HJ; Lee SW; Lee KY; Park TE; Choi HJ
    ACS Appl Mater Interfaces; 2019 Nov; 11(45):42512-42519. PubMed ID: 31633333
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Strong hole-doping and robust resistance-decrease in proton-irradiated graphene.
    Lee C; Kim J; Kim S; Chang YJ; Kim KS; Hong B; Choi EJ
    Sci Rep; 2016 Feb; 6():21311. PubMed ID: 26888197
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Continuous Films of Self-Assembled Graphene Quantum Dots for n-Type Doping of Graphene by UV-Triggered Charge Transfer.
    Park MJ; Kim Y; Kim Y; Hong BH
    Small; 2017 Sep; 13(35):. PubMed ID: 28092424
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Mass Inversion at the Lifshitz Transition in Monolayer Graphene by Diffusive, High-Density, On-Chip Doping.
    Aygar AM; Durnan O; Molavi B; Bovey SNR; Grüneis A; Szkopek T
    ACS Nano; 2024 Mar; 18(12):9092-9099. PubMed ID: 38479375
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Doping graphene films via chemically mediated charge transfer.
    Ishikawa R; Bando M; Morimoto Y; Sandhu A
    Nanoscale Res Lett; 2011 Jan; 6(1):111. PubMed ID: 21711624
    [TBL] [Abstract][Full Text] [Related]  

  • 69. A highly conducting graphene film with dual-side molecular n-doping.
    Kim Y; Park J; Kang J; Yoo JM; Choi K; Kim ES; Choi JB; Hwang C; Novoselov KS; Hong BH
    Nanoscale; 2014 Aug; 6(16):9545-9. PubMed ID: 24993121
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Charge doping in graphene on thermodynamically preferred BiFeO
    Dai JQ; Li XY; Xu JW
    Phys Chem Chem Phys; 2017 Nov; 19(46):31352-31361. PubMed ID: 29152638
    [TBL] [Abstract][Full Text] [Related]  

  • 71. UV Rewritable Hybrid Graphene/Phosphor p-n Junction Photodiode.
    Li H; Su S; Liang C; Zhang T; An X; Huang M; Tao H; Ma X; Ni Z; Tian H; Chen X
    ACS Appl Mater Interfaces; 2019 Nov; 11(46):43351-43358. PubMed ID: 31657205
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Focused-laser-enabled p-n junctions in graphene field-effect transistors.
    Kim YD; Bae MH; Seo JT; Kim YS; Kim H; Lee JH; Ahn JR; Lee SW; Chun SH; Park YD
    ACS Nano; 2013 Jul; 7(7):5850-7. PubMed ID: 23782162
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Seamless lateral graphene p-n junctions formed by selective in situ doping for high-performance photodetectors.
    Wang G; Zhang M; Chen D; Guo Q; Feng X; Niu T; Liu X; Li A; Lai J; Sun D; Liao Z; Wang Y; Chu PK; Ding G; Xie X; Di Z; Wang X
    Nat Commun; 2018 Dec; 9(1):5168. PubMed ID: 30518867
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Submicron Size Schottky Junctions on As-Grown Monolayer Epitaxial Graphene on Ge(100): A Low-Invasive Scanned-Probe-Based Study.
    Pea M; De Seta M; Di Gaspare L; Persichetti L; Scaparro AM; Miseikis V; Coletti C; Notargiacomo A
    ACS Appl Mater Interfaces; 2019 Sep; 11(38):35079-35087. PubMed ID: 31475520
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Seebeck effects in n-type and p-type polymers driven simultaneously by surface polarization and entropy differences based on conductor/polymer/conductor thin-film devices.
    Hu D; Liu Q; Tisdale J; Lei T; Pei J; Wang H; Urbas A; Hu B
    ACS Nano; 2015 May; 9(5):5208-13. PubMed ID: 25877512
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Electronic properties of embedded graphene: doped amorphous silicon/CVD graphene heterostructures.
    Arezki H; Boutchich M; Alamarguy D; Madouri A; Alvarez J; Cabarrocas PR; Kleider JP; Yao F; Hee Lee Y
    J Phys Condens Matter; 2016 Oct; 28(40):404001. PubMed ID: 27506254
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Electrostatics of metal-graphene interfaces: sharp p-n junctions for electron-optical applications.
    Chaves FA; Jiménez D; Santos JE; Bøggild P; Caridad JM
    Nanoscale; 2019 May; 11(21):10273-10281. PubMed ID: 31086868
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Work-Function Engineering of Graphene Electrodes by Self-Assembled Monolayers for High-Performance Organic Field-Effect Transistors.
    Park J; Lee WH; Huh S; Sim SH; Kim SB; Cho K; Hong BH; Kim KS
    J Phys Chem Lett; 2011 Apr; 2(8):841-5. PubMed ID: 26295616
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Cyclic chlorine trap-doping for transparent, conductive, thermally stable and damage-free graphene.
    Pham VP; Kim KN; Jeon MH; Kim KS; Yeom GY
    Nanoscale; 2014 Dec; 6(24):15301-8. PubMed ID: 25385489
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Unusually High Optical Transparency in Hexagonal Nanopatterned Graphene with Enhanced Conductivity by Chemical Doping.
    Choi D; Kuru C; Choi C; Noh K; Hwang S; Choi W; Jin S
    Small; 2015 Jul; 11(26):3143-52. PubMed ID: 25828562
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.