These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
176 related articles for article (PubMed ID: 38048294)
21. Transcriptional Control of Hypoxic Hyphal Growth in the Fungal Pathogen Henry M; Burgain A; Tebbji F; Sellam A Front Cell Infect Microbiol; 2021; 11():770478. PubMed ID: 35127551 [TBL] [Abstract][Full Text] [Related]
22. Candida albicans response regulator gene SSK1 regulates a subset of genes whose functions are associated with cell wall biosynthesis and adaptation to oxidative stress. Chauhan N; Inglis D; Roman E; Pla J; Li D; Calera JA; Calderone R Eukaryot Cell; 2003 Oct; 2(5):1018-24. PubMed ID: 14555484 [TBL] [Abstract][Full Text] [Related]
23. Comparative genomics of the fungal pathogens Candida dubliniensis and Candida albicans. Jackson AP; Gamble JA; Yeomans T; Moran GP; Saunders D; Harris D; Aslett M; Barrell JF; Butler G; Citiulo F; Coleman DC; de Groot PW; Goodwin TJ; Quail MA; McQuillan J; Munro CA; Pain A; Poulter RT; Rajandream MA; Renauld H; Spiering MJ; Tivey A; Gow NA; Barrell B; Sullivan DJ; Berriman M Genome Res; 2009 Dec; 19(12):2231-44. PubMed ID: 19745113 [TBL] [Abstract][Full Text] [Related]
24. Deletion of EFG1 promotes Candida albicans opaque formation responding to pH via Rim101. Nie X; Liu X; Wang H; Chen J Acta Biochim Biophys Sin (Shanghai); 2010 Oct; 42(10):735-44. PubMed ID: 20870932 [TBL] [Abstract][Full Text] [Related]
25. Candida albicans Double Mutants Lacking both Park YN; Pujol C; Wessels DJ; Soll DR mSphere; 2020 Sep; 5(5):. PubMed ID: 32968010 [No Abstract] [Full Text] [Related]
26. MTL-independent phenotypic switching in Candida tropicalis and a dual role for Wor1 in regulating switching and filamentation. Porman AM; Hirakawa MP; Jones SK; Wang N; Bennett RJ PLoS Genet; 2013 Mar; 9(3):e1003369. PubMed ID: 23555286 [TBL] [Abstract][Full Text] [Related]
27. Functional analysis of the phospholipase C gene CaPLC1 and two unusual phospholipase C genes, CaPLC2 and CaPLC3, of Candida albicans. Kunze D; Melzer I; Bennett D; Sanglard D; MacCallum D; Nörskau J; Coleman DC; Odds FC; Schäfer W; Hube B Microbiology (Reading); 2005 Oct; 151(Pt 10):3381-3394. PubMed ID: 16207920 [TBL] [Abstract][Full Text] [Related]
28. Wor1-regulated ferroxidases contribute to pigment formation in opaque cells of Candida albicans. Dai B; Xu Y; Gao N; Chen J FEBS Open Bio; 2021 Mar; 11(3):598-621. PubMed ID: 33350590 [TBL] [Abstract][Full Text] [Related]
29. Ssn6, an important factor of morphological conversion and virulence in Candida albicans. Hwang CS; Oh JH; Huh WK; Yim HS; Kang SO Mol Microbiol; 2003 Feb; 47(4):1029-43. PubMed ID: 12581357 [TBL] [Abstract][Full Text] [Related]
30. Aft2, a novel transcription regulator, is required for iron metabolism, oxidative stress, surface adhesion and hyphal development in Candida albicans. Xu N; Cheng X; Yu Q; Qian K; Ding X; Liu R; Zhang B; Xing L; Li M PLoS One; 2013; 8(4):e62367. PubMed ID: 23626810 [TBL] [Abstract][Full Text] [Related]
31. The PHO pathway regulates white-opaque switching and sexual mating in the human fungal pathogen Candida albicans. Zheng Q; Guan G; Cao C; Li Q; Huang G Curr Genet; 2020 Dec; 66(6):1155-1162. PubMed ID: 32761264 [TBL] [Abstract][Full Text] [Related]
32. Real-Time Evolution of a Subtelomeric Gene Family in Candida albicans. Anderson MZ; Wigen LJ; Burrack LS; Berman J Genetics; 2015 Jul; 200(3):907-19. PubMed ID: 25956943 [TBL] [Abstract][Full Text] [Related]
33. A family of oligopeptide transporters is required for growth of Candida albicans on proteins. Reuss O; Morschhäuser J Mol Microbiol; 2006 May; 60(3):795-812. PubMed ID: 16629678 [TBL] [Abstract][Full Text] [Related]
34. Distinct roles of Candida albicans-specific genes in host-pathogen interactions. Wilson D; Mayer FL; Miramón P; Citiulo F; Slesiona S; Jacobsen ID; Hube B Eukaryot Cell; 2014 Aug; 13(8):977-89. PubMed ID: 24610660 [TBL] [Abstract][Full Text] [Related]
35. Convergent Regulation of Candida albicans Aft2 and Czf1 in Invasive and Opaque Filamentation. Xu N; Dong YJ; Yu QL; Zhang B; Zhang M; Jia C; Chen YL; Zhang B; Xing LJ; Li MC J Cell Biochem; 2015 Sep; 116(9):1908-18. PubMed ID: 25716417 [TBL] [Abstract][Full Text] [Related]
37. Genetic interaction analysis comes to the diploid human pathogen Candida albicans. Glazier VE; Krysan DJ PLoS Pathog; 2020 Apr; 16(4):e1008399. PubMed ID: 32324799 [No Abstract] [Full Text] [Related]
38. Transcriptomic and Metabolomic Analysis Revealed Roles of Yck2 in Carbon Metabolism and Morphogenesis of Liboro K; Yu SR; Lim J; So YS; Bahn YS; Eoh H; Park H Front Cell Infect Microbiol; 2021; 11():636834. PubMed ID: 33796481 [No Abstract] [Full Text] [Related]
39. Identification and characterization of Cor33p, a novel protein implicated in tolerance towards oxidative stress in Candida albicans. Sohn K; Roehm M; Urban C; Saunders N; Rothenstein D; Lottspeich F; Schröppel K; Brunner H; Rupp S Eukaryot Cell; 2005 Dec; 4(12):2160-9. PubMed ID: 16339733 [TBL] [Abstract][Full Text] [Related]
40. Hemoglobin regulates expression of an activator of mating-type locus alpha genes in Candida albicans. Pendrak ML; Yan SS; Roberts DD Eukaryot Cell; 2004 Jun; 3(3):764-75. PubMed ID: 15189997 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]