These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

118 related articles for article (PubMed ID: 38048703)

  • 1. S-nitrosylation switches the Arabidopsis redox sensor protein, QSOX1, from an oxidoreductase to a molecular chaperone under heat stress.
    Chae HB; Bae SB; Paeng SK; Wi SD; Thi Phan KA; Lee SY
    Plant Physiol Biochem; 2024 Jan; 206():108219. PubMed ID: 38048703
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Thioredoxin reductase type C (NTRC) orchestrates enhanced thermotolerance to Arabidopsis by its redox-dependent holdase chaperone function.
    Chae HB; Moon JC; Shin MR; Chi YH; Jung YJ; Lee SY; Nawkar GM; Jung HS; Hyun JK; Kim WY; Kang CH; Yun DJ; Lee KO; Lee SY
    Mol Plant; 2013 Mar; 6(2):323-36. PubMed ID: 23024205
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Structural snapshots of nitrosoglutathione binding and reactivity underlying S-nitrosylation of photosynthetic GAPDH.
    Mattioli EJ; Rossi J; Meloni M; De Mia M; Marchand CH; Tagliani A; Fanti S; Falini G; Trost P; Lemaire SD; Fermani S; Calvaresi M; Zaffagnini M
    Redox Biol; 2022 Aug; 54():102387. PubMed ID: 35793584
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Site-specific nitrosoproteomic identification of endogenously S-nitrosylated proteins in Arabidopsis.
    Hu J; Huang X; Chen L; Sun X; Lu C; Zhang L; Wang Y; Zuo J
    Plant Physiol; 2015 Apr; 167(4):1731-46. PubMed ID: 25699590
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Heat-shock and redox-dependent functional switching of an h-type Arabidopsis thioredoxin from a disulfide reductase to a molecular chaperone.
    Park SK; Jung YJ; Lee JR; Lee YM; Jang HH; Lee SS; Park JH; Kim SY; Moon JC; Lee SY; Chae HB; Shin MR; Jung JH; Kim MG; Kim WY; Yun DJ; Lee KO; Lee SY
    Plant Physiol; 2009 Jun; 150(2):552-61. PubMed ID: 19339505
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Nitric oxide and S-nitrosoglutathione function additively during plant immunity.
    Yun BW; Skelly MJ; Yin M; Yu M; Mun BG; Lee SU; Hussain A; Spoel SH; Loake GJ
    New Phytol; 2016 Jul; 211(2):516-26. PubMed ID: 26916092
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Redox sensor QSOX1 regulates plant immunity by targeting GSNOR to modulate ROS generation.
    Chae HB; Kim MG; Kang CH; Park JH; Lee ES; Lee SU; Chi YH; Paeng SK; Bae SB; Wi SD; Yun BW; Kim WY; Yun DJ; Mackey D; Lee SY
    Mol Plant; 2021 Aug; 14(8):1312-1327. PubMed ID: 33962063
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Heat-induced chaperone activity of serine/threonine protein phosphatase 5 enhances thermotolerance in Arabidopsis thaliana.
    Park JH; Lee SY; Kim WY; Jung YJ; Chae HB; Jung HS; Kang CH; Shin MR; Kim SY; Su'udi M; Yun DJ; Lee KO; Kim MG; Lee SY
    New Phytol; 2011 Aug; 191(3):692-705. PubMed ID: 21564098
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Functional Characterization of an
    Son H; Jung YJ; Park SC; Kim IR; Park JH; Jang MK; Lee JR
    Molecules; 2022 Sep; 27(18):. PubMed ID: 36144503
    [TBL] [Abstract][Full Text] [Related]  

  • 10. TRAP1 S-nitrosylation as a model of population-shift mechanism to study the effects of nitric oxide on redox-sensitive oncoproteins.
    Papaleo E; Tiberti M; Arnaudi M; Pecorari C; Faienza F; Cantwell L; Degn K; Pacello F; Battistoni A; Lambrughi M; Filomeni G
    Cell Death Dis; 2023 Apr; 14(4):284. PubMed ID: 37085483
    [TBL] [Abstract][Full Text] [Related]  

  • 11. S-nitrosylation of ascorbate peroxidase is part of programmed cell death signaling in tobacco Bright Yellow-2 cells.
    de Pinto MC; Locato V; Sgobba A; Romero-Puertas Mdel C; Gadaleta C; Delledonne M; De Gara L
    Plant Physiol; 2013 Dec; 163(4):1766-75. PubMed ID: 24158396
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Quiescin/sulfhydryl oxidase 1b (QSOX1b) induces migration and proliferation of vascular smooth muscle cells by distinct redox pathways.
    França KC; Martinez PA; Prado ML; Lo SM; Borges BE; Zanata SM; San Martin A; Nakao LS
    Arch Biochem Biophys; 2020 Jan; 679():108220. PubMed ID: 31812669
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Universal Stress Protein Exhibits a Redox-Dependent Chaperone Function in Arabidopsis and Enhances Plant Tolerance to Heat Shock and Oxidative Stress.
    Jung YJ; Melencion SM; Lee ES; Park JH; Alinapon CV; Oh HT; Yun DJ; Chi YH; Lee SY
    Front Plant Sci; 2015; 6():1141. PubMed ID: 26734042
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Identification and quantification of S-nitrosylation by cysteine reactive tandem mass tag switch assay.
    Murray CI; Uhrigshardt H; O'Meally RN; Cole RN; Van Eyk JE
    Mol Cell Proteomics; 2012 Feb; 11(2):M111.013441. PubMed ID: 22126794
    [TBL] [Abstract][Full Text] [Related]  

  • 15. S-Nitrosylation Targets GSNO Reductase for Selective Autophagy during Hypoxia Responses in Plants.
    Zhan N; Wang C; Chen L; Yang H; Feng J; Gong X; Ren B; Wu R; Mu J; Li Y; Liu Z; Zhou Y; Peng J; Wang K; Huang X; Xiao S; Zuo J
    Mol Cell; 2018 Jul; 71(1):142-154.e6. PubMed ID: 30008318
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Identification of endogenously S-nitrosylated proteins in Arabidopsis plantlets: effect of cold stress on cysteine nitrosylation level.
    Puyaubert J; Fares A; Rézé N; Peltier JB; Baudouin E
    Plant Sci; 2014 Feb; 215-216():150-6. PubMed ID: 24388526
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Heat-shock dependent oligomeric status alters the function of a plant-specific thioredoxin-like protein, AtTDX.
    Lee JR; Lee SS; Jang HH; Lee YM; Park JH; Park SC; Moon JC; Park SK; Kim SY; Lee SY; Chae HB; Jung YJ; Kim WY; Shin MR; Cheong GW; Kim MG; Kang KR; Lee KO; Yun DJ; Lee SY
    Proc Natl Acad Sci U S A; 2009 Apr; 106(14):5978-83. PubMed ID: 19293385
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Arabidopsis heat shock factor HsfA1a directly senses heat stress, pH changes, and hydrogen peroxide via the engagement of redox state.
    Liu Y; Zhang C; Chen J; Guo L; Li X; Li W; Yu Z; Deng J; Zhang P; Zhang K; Zhang L
    Plant Physiol Biochem; 2013 Mar; 64():92-8. PubMed ID: 23399534
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Recent advances in the regulation of plant immunity by S-nitrosylation.
    Lubega J; Umbreen S; Loake GJ
    J Exp Bot; 2021 Feb; 72(3):864-872. PubMed ID: 33005916
    [TBL] [Abstract][Full Text] [Related]  

  • 20. STAT3 Regulation By S-Nitrosylation: Implication In Cancer.
    Singh I; Kim J; Singh AK; Sharma AK; Won JS
    Redox Biol; 2015 Aug; 5():416-417. PubMed ID: 28162277
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.