These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

215 related articles for article (PubMed ID: 38048867)

  • 21. Exposure of engineered nanomaterials to plants: Insights into the physiological and biochemical responses-A review.
    Zuverza-Mena N; Martínez-Fernández D; Du W; Hernandez-Viezcas JA; Bonilla-Bird N; López-Moreno ML; Komárek M; Peralta-Videa JR; Gardea-Torresdey JL
    Plant Physiol Biochem; 2017 Jan; 110():236-264. PubMed ID: 27289187
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Practical review on the use of synchrotron based micro- and nano- X-ray fluorescence mapping and X-ray absorption spectroscopy to investigate the interactions between plants and engineered nanomaterials.
    Castillo-Michel HA; Larue C; Pradas Del Real AE; Cotte M; Sarret G
    Plant Physiol Biochem; 2017 Jan; 110():13-32. PubMed ID: 27475903
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Aquatic Mesocosm Strategies for the Environmental Fate and Risk Assessment of Engineered Nanomaterials.
    Carboni A; Slomberg DL; Nassar M; Santaella C; Masion A; Rose J; Auffan M
    Environ Sci Technol; 2021 Dec; 55(24):16270-16282. PubMed ID: 34854667
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Trophic transfer, transformation, and impact of engineered nanomaterials in terrestrial environments.
    Gardea-Torresdey JL; Rico CM; White JC
    Environ Sci Technol; 2014; 48(5):2526-40. PubMed ID: 24499408
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Nanomaterials in the environment: from materials to high-throughput screening to organisms.
    Thomas CR; George S; Horst AM; Ji Z; Miller RJ; Peralta-Videa JR; Xia T; Pokhrel S; Mädler L; Gardea-Torresdey JL; Holden PA; Keller AA; Lenihan HS; Nel AE; Zink JI
    ACS Nano; 2011 Jan; 5(1):13-20. PubMed ID: 21261306
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Engineered nanomaterials: From their properties and applications, to their toxicity towards marine bivalves in a changing environment.
    De Marchi L; Coppola F; Soares AMVM; Pretti C; Monserrat JM; Torre CD; Freitas R
    Environ Res; 2019 Nov; 178():108683. PubMed ID: 31539823
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Aquatic Toxicity Effects and Risk Assessment of 'Form Specific' Product-Released Engineered Nanomaterials.
    Lehutso RF; Wesley-Smith J; Thwala M
    Int J Mol Sci; 2021 Nov; 22(22):. PubMed ID: 34830350
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Effects of silver sulfide nanomaterials on mycorrhizal colonization of tomato plants and soil microbial communities in biosolid-amended soil.
    Judy JD; Kirby JK; Creamer C; McLaughlin MJ; Fiebiger C; Wright C; Cavagnaro TR; Bertsch PM
    Environ Pollut; 2015 Nov; 206():256-63. PubMed ID: 26196315
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Nanotechnologies for environmental remediation and their ecotoxicological impacts.
    Ejaz M; Gul A; Ozturk M; Hafeez A; Turkyilmaz Unal B; Jan SU; Siddique MT
    Environ Monit Assess; 2023 Oct; 195(11):1368. PubMed ID: 37875634
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Assessing the Risk of Engineered Nanomaterials in the Environment: Development and Application of the nanoFate Model.
    Garner KL; Suh S; Keller AA
    Environ Sci Technol; 2017 May; 51(10):5541-5551. PubMed ID: 28443660
    [TBL] [Abstract][Full Text] [Related]  

  • 31.
    Yu H; Luo D; Dai L; Cheng F
    Nanoscale; 2021 May; 13(19):8722-8739. PubMed ID: 33960351
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Potential functions of engineered nanomaterials in cadmium remediation in soil-plant system: A review.
    Li Y; Xu R; Ma C; Yu J; Lei S; Han Q; Wang H
    Environ Pollut; 2023 Nov; 336():122340. PubMed ID: 37562530
    [TBL] [Abstract][Full Text] [Related]  

  • 33. The neurotoxicity induced by engineered nanomaterials.
    Ge D; Du Q; Ran B; Liu X; Wang X; Ma X; Cheng F; Sun B
    Int J Nanomedicine; 2019; 14():4167-4186. PubMed ID: 31239675
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Recent advances on environmental behavior of Cu-based nanomaterials in soil-plant system: A review.
    Gao J; Zhu Y; Zeng L; Liu X; Yang Y; Zhou Y
    J Environ Manage; 2024 Jun; 361():121289. PubMed ID: 38820797
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Using a holistic approach to assess the impact of engineered nanomaterials inducing toxicity in aquatic systems.
    He X; Aker WG; Leszczynski J; Hwang HM
    J Food Drug Anal; 2014 Mar; 22(1):128-146. PubMed ID: 24673910
    [TBL] [Abstract][Full Text] [Related]  

  • 36. The antibacterial effects of engineered nanomaterials: implications for wastewater treatment plants.
    Musee N; Thwala M; Nota N
    J Environ Monit; 2011 May; 13(5):1164-83. PubMed ID: 21505709
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Fate and toxicity of engineered nanomaterials in the environment: A meta-analysis.
    Dodds WK; Guinnip JP; Schechner AE; Pfaff PJ; Smith EB
    Sci Total Environ; 2021 Nov; 796():148843. PubMed ID: 34280635
    [TBL] [Abstract][Full Text] [Related]  

  • 38. The impacts of metal-based engineered nanomaterial mixtures on microbial systems: A review.
    Wu S; Gaillard JF; Gray KA
    Sci Total Environ; 2021 Aug; 780():146496. PubMed ID: 34030287
    [TBL] [Abstract][Full Text] [Related]  

  • 39. MESOCOSM: A mesocosm database management system for environmental nanosafety.
    Ayadi A; Rose J; de Garidel-Thoron C; Hendren C; Wiesner MR; Auffan M
    NanoImpact; 2021 Jan; 21():100288. PubMed ID: 35559777
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Recent advances in responses of arbuscular mycorrhizal fungi - Plant symbiosis to engineered nanoparticles.
    Wang L; Yang D; Ma F; Wang G; You Y
    Chemosphere; 2022 Jan; 286(Pt 1):131644. PubMed ID: 34346335
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.