BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

165 related articles for article (PubMed ID: 38048920)

  • 1. Universal and unique strategies for the production of polyunsaturated fatty acids in industrial oleaginous microorganisms.
    Yan CX; Zhang Y; Yang WQ; Ma W; Sun XM; Huang H
    Biotechnol Adv; 2024; 70():108298. PubMed ID: 38048920
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Production of High-Value Polyunsaturated Fatty Acids Using Microbial Cultures.
    Jin M; Zhai R; Xu Z; Wen Z
    Methods Mol Biol; 2019; 1995():229-248. PubMed ID: 31148133
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Metabolic engineering for the production of polyunsaturated fatty acids by oleaginous fungus Mortierella alpina 1S-4.
    Sakuradani E; Ando A; Shimizu S; Ogawa J
    J Biosci Bioeng; 2013 Oct; 116(4):417-22. PubMed ID: 23648102
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Polyunsaturated fatty acid production by Yarrowia lipolytica employing designed myxobacterial PUFA synthases.
    Gemperlein K; Dietrich D; Kohlstedt M; Zipf G; Bernauer HS; Wittmann C; Wenzel SC; Müller R
    Nat Commun; 2019 Sep; 10(1):4055. PubMed ID: 31492836
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Sustainable source of omega-3 eicosapentaenoic acid from metabolically engineered Yarrowia lipolytica: from fundamental research to commercial production.
    Xie D; Jackson EN; Zhu Q
    Appl Microbiol Biotechnol; 2015 Feb; 99(4):1599-610. PubMed ID: 25567511
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Production of omega-3 eicosapentaenoic acid by metabolic engineering of Yarrowia lipolytica.
    Xue Z; Sharpe PL; Hong SP; Yadav NS; Xie D; Short DR; Damude HG; Rupert RA; Seip JE; Wang J; Pollak DW; Bostick MW; Bosak MD; Macool DJ; Hollerbach DH; Zhang H; Arcilla DM; Bledsoe SA; Croker K; McCord EF; Tyreus BD; Jackson EN; Zhu Q
    Nat Biotechnol; 2013 Aug; 31(8):734-40. PubMed ID: 23873085
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Production of polyunsaturated fatty acids by Schizochytrium (Aurantiochytrium) spp.
    Chi G; Xu Y; Cao X; Li Z; Cao M; Chisti Y; He N
    Biotechnol Adv; 2022; 55():107897. PubMed ID: 34974158
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Interactions between dietary docosahexaenoic acid and other long-chain polyunsaturated fatty acids on performance and fatty acid retention in post-smolt Atlantic salmon (Salmo salar).
    Glencross BD; Tocher DR; Matthew C; Bell JG
    Fish Physiol Biochem; 2014 Aug; 40(4):1213-27. PubMed ID: 24515629
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Reprogramming the fatty acid metabolism of Yarrowia lipolytica to produce the customized omega-6 polyunsaturated fatty acids.
    Wang J; Yu X; Wang K; Lin L; Liu HH; Ledesma-Amaro R; Ji XJ
    Bioresour Technol; 2023 Sep; 383():129231. PubMed ID: 37244310
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effects of arachidonic acid, eicosapentaenoic acid and docosahexaenoic acid on brain development using artificial rearing of delta-6-desaturase knockout mice.
    Harauma A; Hatanaka E; Yasuda H; Nakamura MT; Salem N; Moriguchi T
    Prostaglandins Leukot Essent Fatty Acids; 2017 Dec; 127():32-39. PubMed ID: 29156156
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Diets enriched in menhaden fish oil, seal oil, or shark liver oil have distinct effects on the lipid and fatty-acid composition of guinea pig heart.
    Murphy MG; Wright V; Ackman RG; Horackova M
    Mol Cell Biochem; 1997 Dec; 177(1-2):257-69. PubMed ID: 9450671
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Advancing oleaginous microorganisms to produce lipid via metabolic engineering technology.
    Liang MH; Jiang JG
    Prog Lipid Res; 2013 Oct; 52(4):395-408. PubMed ID: 23685199
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Molecular mechanisms for biosynthesis and assembly of nutritionally important very long chain polyunsaturated fatty acids in microorganisms.
    Qiu X; Xie X; Meesapyodsuk D
    Prog Lipid Res; 2020 Jul; 79():101047. PubMed ID: 32540152
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Refactoring the architecture of a polyketide gene cluster enhances docosahexaenoic acid production in Yarrowia lipolytica through improved expression and genetic stability.
    Dietrich D; Jovanovic-Gasovic S; Cao P; Kohlstedt M; Wittmann C
    Microb Cell Fact; 2023 Sep; 22(1):199. PubMed ID: 37773137
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Microbial sources of polyunsaturated fatty acids (PUFAs) and the prospect of organic residues and wastes as growth media for PUFA-producing microorganisms.
    Kothri M; Mavrommati M; Elazzazy AM; Baeshen MN; Moussa TAA; Aggelis G
    FEMS Microbiol Lett; 2020 Mar; 367(5):. PubMed ID: 32053204
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Esterification and modification of [1-
    Reis DB; Pérez JA; Lund I; Acosta NG; Abdul-Jalbar B; Bolaños A; Rodríguez C
    Comp Biochem Physiol B Biochem Mol Biol; 2020; 246-247():110449. PubMed ID: 32437953
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Influence of dietary docosahexaenoic acid in combination with other long-chain polyunsaturated fatty acids on expression of biosynthesis genes and phospholipid fatty acid compositions in tissues of post-smolt Atlantic salmon (Salmo salar).
    Betancor MB; Howarth FJ; Glencross BD; Tocher DR
    Comp Biochem Physiol B Biochem Mol Biol; 2014; 172-173():74-89. PubMed ID: 24807616
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Do Eicosapentaenoic Acid and Docosahexaenoic Acid Have the Potential to Compete against Each Other?
    Pal A; Metherel AH; Fiabane L; Buddenbaum N; Bazinet RP; Shaikh SR
    Nutrients; 2020 Dec; 12(12):. PubMed ID: 33276463
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Yarrowia lipolytica as a biotechnological chassis to produce usual and unusual fatty acids.
    Ledesma-Amaro R; Nicaud JM
    Prog Lipid Res; 2016 Jan; 61():40-50. PubMed ID: 26703186
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Association between dietary polyunsaturated fatty acids and their concentration in blood plasma, red blood cell, and semen of dogs.
    Pellegrino FJ; Corrada Y; Picco SJ; Relling AE; Risso A
    Open Vet J; 2023 Mar; 13(3):348-351. PubMed ID: 37026078
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.