These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
168 related articles for article (PubMed ID: 38049415)
1. Overexpressed Gαi1 exerts pro-tumorigenic activity in nasopharyngeal carcinoma. Yin DP; Zhang H; Teng H; Zhang D; Chen P; Xie L; Liu JS Cell Death Dis; 2023 Dec; 14(12):792. PubMed ID: 38049415 [TBL] [Abstract][Full Text] [Related]
2. Expression and functional implications of YME1L in nasopharyngeal carcinoma. Cheng F; Huang H; Yin S; Liu JS; Sun P Cell Death Dis; 2024 Jun; 15(6):423. PubMed ID: 38890304 [TBL] [Abstract][Full Text] [Related]
3. Targeting the mitochondrial protein YME1L to inhibit osteosarcoma cell growth in vitro and in vivo. Sun X; Shi C; Dai J; Zhang MQ; Pei DS; Yang L Cell Death Dis; 2024 May; 15(5):346. PubMed ID: 38769124 [TBL] [Abstract][Full Text] [Related]
4. The pro-tumorigenic activity of p38γ overexpression in nasopharyngeal carcinoma. Yin DP; Zheng YF; Sun P; Yao MY; Xie LX; Dou XW; Tian Y; Liu JS Cell Death Dis; 2022 Mar; 13(3):210. PubMed ID: 35246508 [TBL] [Abstract][Full Text] [Related]
5. Increased expression of REG3A promotes tumorigenic behavior in triple negative breast cancer cells. Jin X; Yang S; Lu X; Chen X; Dai W Breast Cancer Res; 2024 Jun; 26(1):92. PubMed ID: 38840145 [TBL] [Abstract][Full Text] [Related]
6. LncRNA PINK1-AS promotes Gαi1-driven gastric cancer tumorigenesis by sponging microRNA-200a. Lv Y; Wang Y; Song Y; Wang SS; Cheng KW; Zhang ZQ; Yao J; Zhou LN; Ling ZY; Cao C Oncogene; 2021 Jun; 40(22):3826-3844. PubMed ID: 33958720 [TBL] [Abstract][Full Text] [Related]
7. Upregulated TRIM29 promotes proliferation and metastasis of nasopharyngeal carcinoma via PTEN/AKT/mTOR signal pathway. Zhou XM; Sun R; Luo DH; Sun J; Zhang MY; Wang MH; Yang Y; Wang HY; Mai SJ Oncotarget; 2016 Mar; 7(12):13634-50. PubMed ID: 26872369 [TBL] [Abstract][Full Text] [Related]
8. The mitochondrial protein YME1 Like 1 is important for non-small cell lung cancer cell growth. Xia Y; He C; Hu Z; Wu Z; Hui Y; Liu YY; Mu C; Zha J Int J Biol Sci; 2023; 19(6):1778-1790. PubMed ID: 37063426 [TBL] [Abstract][Full Text] [Related]
9. The sodium/myo-inositol co-transporter SLC5A3 promotes non-small cell lung cancer cell growth. Cui Z; Mu C; Wu Z; Pan S; Cheng Z; Zhang ZQ; Zhao J; Xu C Cell Death Dis; 2022 Jun; 13(6):569. PubMed ID: 35760803 [TBL] [Abstract][Full Text] [Related]
10. microRNA-200a downregulation in human glioma leads to Gαi1 over-expression, Akt activation, and cell proliferation. Liu YY; Chen MB; Cheng L; Zhang ZQ; Yu ZQ; Jiang Q; Chen G; Cao C Oncogene; 2018 May; 37(21):2890-2902. PubMed ID: 29520106 [TBL] [Abstract][Full Text] [Related]
11. Identification of matrix-remodeling associated 5 as a possible molecular oncotarget of pancreatic cancer. Peng SQ; Zhu XR; Zhao MZ; Zhang YF; Wang AR; Chen MB; Ye ZY Cell Death Dis; 2023 Feb; 14(2):157. PubMed ID: 36828810 [TBL] [Abstract][Full Text] [Related]
12. Gαi1/3 mediate Netrin-1-CD146-activated signaling and angiogenesis. Li Y; Chai JL; Shi X; Feng Y; Li JJ; Zhou LN; Cao C; Li KR Theranostics; 2023; 13(7):2319-2336. PubMed ID: 37153740 [TBL] [Abstract][Full Text] [Related]
13. Epithelial cell adhesion molecule overexpression regulates epithelial-mesenchymal transition, stemness and metastasis of nasopharyngeal carcinoma cells via the PTEN/AKT/mTOR pathway. Wang MH; Sun R; Zhou XM; Zhang MY; Lu JB; Yang Y; Zeng LS; Yang XZ; Shi L; Xiao RW; Wang HY; Mai SJ Cell Death Dis; 2018 Jan; 9(1):2. PubMed ID: 29305578 [TBL] [Abstract][Full Text] [Related]
14. Identification of Gαi3 as a promising molecular oncotarget of pancreatic cancer. Jiang JZ; Qiao YB; Zhu XR; Gu QH; Lu JJ; Ye ZY; Xu L; Liu YY Cell Death Dis; 2024 Sep; 15(9):699. PubMed ID: 39349432 [TBL] [Abstract][Full Text] [Related]
15. C2orf40 inhibits metastasis and regulates chemo-resistance and radio-resistance of nasopharyngeal carcinoma cells by influencing cell cycle and activating the PI3K/AKT/mTOR signaling pathway. Xie Z; Li W; Ai J; Xie J; Zhang X J Transl Med; 2022 Jun; 20(1):264. PubMed ID: 35676661 [TBL] [Abstract][Full Text] [Related]
16. Function of AXL and molecular mechanisms in regulation of nasopharyngeal carcinoma. Zhou K; Zhao J; Xu H; Yan X; Liu W; Jiang X; Ren C Zhong Nan Da Xue Xue Bao Yi Xue Ban; 2022 Jun; 47(6):685-697. PubMed ID: 35837768 [TBL] [Abstract][Full Text] [Related]
17. Nasopharyngeal carcinoma with non-squamous phenotype may be a variant of nasopharyngeal squamous cell carcinoma after inhibition of EGFR/PI3K/AKT/mTOR pathway. Wang J; Shang Y; Wang Y; Li Y; Wang L; Huang S; Lyu X Histol Histopathol; 2024 May; 39(5):647-657. PubMed ID: 37971211 [TBL] [Abstract][Full Text] [Related]
18. Pre-treatment with angiotensin-(1-7) inhibits tumor growth via autophagy by downregulating PI3K/Akt/mTOR signaling in human nasopharyngeal carcinoma xenografts. Lin YT; Wang HC; Chuang HC; Hsu YC; Yang MY; Chien CY J Mol Med (Berl); 2018 Dec; 96(12):1407-1418. PubMed ID: 30374682 [TBL] [Abstract][Full Text] [Related]
19. SCF/c-Kit-activated signaling and angiogenesis require Gαi1 and Gαi3. Shan HJ; Jiang K; Zhao MZ; Deng WJ; Cao WH; Li JJ; Li KR; She C; Luo WF; Yao J; Zhou XZ; Zhang D; Cao C Int J Biol Sci; 2023; 19(6):1910-1924. PubMed ID: 37063428 [TBL] [Abstract][Full Text] [Related]
20. APLNR is involved in ATRA-induced growth inhibition of nasopharyngeal carcinoma and may suppress EMT through PI3K-Akt-mTOR signaling. Liu Y; Liu Q; Chen S; Liu Y; Huang Y; Chen P; Li X; Gao G; Xu K; Fan S; Zeng Z; Xiong W; Tan M; Li G; Zhang W FASEB J; 2019 Nov; 33(11):11959-11972. PubMed ID: 31408612 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]