These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

110 related articles for article (PubMed ID: 38049426)

  • 1. Publisher Correction: Real-space observation of ergodicity transitions in artificial spin ice.
    Saccone M; Caravelli F; Hofhuis K; Dhuey S; Scholl A; Nisoli C; Farhan A
    Nat Commun; 2023 Dec; 14(1):8027. PubMed ID: 38049426
    [No Abstract]   [Full Text] [Related]  

  • 2. Real-space observation of ergodicity transitions in artificial spin ice.
    Saccone M; Caravelli F; Hofhuis K; Dhuey S; Scholl A; Nisoli C; Farhan A
    Nat Commun; 2023 Sep; 14(1):5674. PubMed ID: 37704596
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Real-space observation of magnetic excitations and avalanche behavior in artificial quasicrystal lattices.
    Brajuskovic V; Barrows F; Phatak C; Petford-Long AK
    Sci Rep; 2016 Oct; 6():34384. PubMed ID: 27694973
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Ergodicity breaking in rapidly rotating C
    Liu LR; Rosenberg D; Changala PB; Crowley PJD; Nesbitt DJ; Yao NY; Tscherbul TV; Ye J
    Science; 2023 Aug; 381(6659):778-783. PubMed ID: 37590361
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Phase transitions in few-monolayer spin ice films.
    Bovo L; Rouleau CM; Prabhakaran D; Bramwell ST
    Nat Commun; 2019 Mar; 10(1):1219. PubMed ID: 30872569
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Thermal phase transitions in artificial spin ice.
    Levis D; Cugliandolo LF; Foini L; Tarzia M
    Phys Rev Lett; 2013 May; 110(20):207206. PubMed ID: 25167447
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Strong ergodicity breaking in aging of mean-field spin glasses.
    Bernaschi M; Billoire A; Maiorano A; Parisi G; Ricci-Tersenghi F
    Proc Natl Acad Sci U S A; 2020 Jul; 117(30):17522-17527. PubMed ID: 32651276
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Magnetic-charge ordering and phase transitions in monopole-conserved square spin ice.
    Xie YL; Du ZZ; Yan ZB; Liu JM
    Sci Rep; 2015 Oct; 5():15875. PubMed ID: 26511870
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Quantum transitions, ergodicity, and quantum scars in the coupled top model.
    Mondal D; Sinha S; Sinha S
    Phys Rev E; 2022 Jan; 105(1-1):014130. PubMed ID: 35193322
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Phase space gaps and ergodicity breaking in systems with long-range interactions.
    Bouchet F; Dauxois T; Mukamel D; Ruffo S
    Phys Rev E Stat Nonlin Soft Matter Phys; 2008 Jan; 77(1 Pt 1):011125. PubMed ID: 18351836
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Ergodicity Breaking Transition in Zero Dimensions.
    Šuntajs J; Vidmar L
    Phys Rev Lett; 2022 Aug; 129(6):060602. PubMed ID: 36018665
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Crystallites of magnetic charges in artificial spin ice.
    Zhang S; Gilbert I; Nisoli C; Chern GW; Erickson MJ; O'Brien L; Leighton C; Lammert PE; Crespi VH; Schiffer P
    Nature; 2013 Aug; 500(7464):553-7. PubMed ID: 23985872
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Continuously broken ergodicity.
    Mauro JC; Gupta PK; Loucks RJ
    J Chem Phys; 2007 May; 126(18):184511. PubMed ID: 17508815
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Reconfigurable training and reservoir computing in an artificial spin-vortex ice via spin-wave fingerprinting.
    Gartside JC; Stenning KD; Vanstone A; Holder HH; Arroo DM; Dion T; Caravelli F; Kurebayashi H; Branford WR
    Nat Nanotechnol; 2022 May; 17(5):460-469. PubMed ID: 35513584
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Extensive degeneracy, Coulomb phase and magnetic monopoles in artificial square ice.
    Perrin Y; Canals B; Rougemaille N
    Nature; 2016 Dec; 540(7633):410-413. PubMed ID: 27894124
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Order and disorder, crossovers, and phase transitions in dipolar artificial spin ice on the Cairo lattice.
    Shevchenko Y; Strongin V; Kapitan V; Soldatov K; Makarov A; Padalko M; Volotovskii R; Nefedev K
    Phys Rev E; 2022 Dec; 106(6-1):064105. PubMed ID: 36671183
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Fragmentation of magnetism in artificial kagome dipolar spin ice.
    Canals B; Chioar IA; Nguyen VD; Hehn M; Lacour D; Montaigne F; Locatelli A; Menteş TO; Burgos BS; Rougemaille N
    Nat Commun; 2016 May; 7():11446. PubMed ID: 27173154
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Thermal fluctuations in artificial spin ice.
    Kapaklis V; Arnalds UB; Farhan A; Chopdekar RV; Balan A; Scholl A; Heyderman LJ; Hjörvarsson B
    Nat Nanotechnol; 2014 Jul; 9(7):514-9. PubMed ID: 24908258
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Disorder-Induced Quantum Spin Liquid in Spin Ice Pyrochlores.
    Savary L; Balents L
    Phys Rev Lett; 2017 Feb; 118(8):087203. PubMed ID: 28282206
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Publisher Correction: Observation of transverse spin Nernst magnetoresistance induced by thermal spin current in ferromagnet/non-magnet bilayers.
    Kim DJ; Jeon CY; Choi JG; Wook Lee J; Surabhi S; Jeong JR; Lee KJ; Park BG
    Nat Commun; 2018 Jan; 9(1):138. PubMed ID: 29305591
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.