These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
227 related articles for article (PubMed ID: 38049547)
1. Use of machine learning-based classification algorithms in the monitoring of Land Use and Land Cover practices in a hilly terrain. Parashar D; Kumar A; Palni S; Pandey A; Singh A; Singh AP Environ Monit Assess; 2023 Dec; 196(1):8. PubMed ID: 38049547 [TBL] [Abstract][Full Text] [Related]
2. Fusion of spectral and topographic features for land use mapping using a machine learning framework for a regional scale application. Sankalpa JKS; Rathnayaka AMRWSD; Ishani PGN; Liyanaarachchi LATS; Gayan MWH; Wijesuriya W; Karunaratne S Environ Monit Assess; 2024 Oct; 196(11):1030. PubMed ID: 39377874 [TBL] [Abstract][Full Text] [Related]
3. Demi-decadal land use land cover change analysis of Mizoram, India, with topographic correction using machine learning algorithm. Gupta P; Shukla DP Environ Sci Pollut Res Int; 2024 May; 31(21):30569-30591. PubMed ID: 38609681 [TBL] [Abstract][Full Text] [Related]
4. Mapping and monitoring land use land cover dynamics employing Google Earth Engine and machine learning algorithms on Chattogram, Bangladesh. Biswas J; Jobaer MA; Haque SF; Islam Shozib MS; Limon ZA Heliyon; 2023 Nov; 9(11):e21245. PubMed ID: 37954389 [TBL] [Abstract][Full Text] [Related]
5. Spatio-temporal classification of land use and land cover and its changes in Kerala using remote sensing and machine learning approach. Vijay A; Varija K Environ Monit Assess; 2024 Apr; 196(5):459. PubMed ID: 38634958 [TBL] [Abstract][Full Text] [Related]
6. Spatio-temporal classification and prediction of land use and land cover change for the Vembanad Lake system, Kerala: a machine learning approach. Kulithalai Shiyam Sundar P; Deka PC Environ Sci Pollut Res Int; 2022 Dec; 29(57):86220-86236. PubMed ID: 34767164 [TBL] [Abstract][Full Text] [Related]
7. Modelling of land use land cover changes using machine learning and GIS techniques: a case study in El-Fayoum Governorate, Egypt. Atef I; Ahmed W; Abdel-Maguid RH Environ Monit Assess; 2023 May; 195(6):637. PubMed ID: 37133528 [TBL] [Abstract][Full Text] [Related]
8. Analysis of land use and land cover change using machine learning algorithm in Yola North Local Government Area of Adamawa State, Nigeria. Aliyu A; Isma'il M; Zubairu SM; Gwio-Kura IY; Abdullahi A; Abubakar BA; Mansur M Environ Monit Assess; 2023 Nov; 195(12):1470. PubMed ID: 37962723 [TBL] [Abstract][Full Text] [Related]
9. Modeling the spatiotemporal heterogeneity of land surface temperature and its relationship with land use land cover using geo-statistical techniques and machine learning algorithms. Bindajam AA; Mallick J; Talukdar S; Shahfahad ; Shohan AAA; Rahman A Environ Sci Pollut Res Int; 2023 Oct; 30(49):106917-106935. PubMed ID: 36178650 [TBL] [Abstract][Full Text] [Related]
10. Urban sprawl impact assessment on the land surface temperature over the green capital of Gujarat using a geospatial approach. Kalyan S; Pathak B Environ Monit Assess; 2024 Aug; 196(9):866. PubMed ID: 39214882 [TBL] [Abstract][Full Text] [Related]
11. Spatial and temporal classification and prediction of LULC in Brahmani and Baitarni basin using integrated cellular automata models. Indraja G; Aashi A; Vema VK Environ Monit Assess; 2024 Jan; 196(2):117. PubMed ID: 38183538 [TBL] [Abstract][Full Text] [Related]
12. Quantitative assessment of Land use/land cover changes in a developing region using machine learning algorithms: A case study in the Kurdistan Region, Iraq. Rash A; Mustafa Y; Hamad R Heliyon; 2023 Nov; 9(11):e21253. PubMed ID: 37954393 [TBL] [Abstract][Full Text] [Related]
13. Land-Use and Land-Cover Classification in Semi-Arid Areas from Medium-Resolution Remote-Sensing Imagery: A Deep Learning Approach. Ali K; Johnson BA Sensors (Basel); 2022 Nov; 22(22):. PubMed ID: 36433346 [TBL] [Abstract][Full Text] [Related]
14. Accurate classification of land use and land cover using a boundary-specific two-level learning approach augmented with auxiliary features in Google Earth Engine. Selvaraj R; Amali D GB Environ Monit Assess; 2023 Oct; 195(11):1280. PubMed ID: 37804363 [TBL] [Abstract][Full Text] [Related]
15. Sen-2 LULC: Land use land cover dataset for deep learning approaches. Sawant S; Garg RD; Meshram V; Mistry S Data Brief; 2023 Dec; 51():109724. PubMed ID: 37965594 [TBL] [Abstract][Full Text] [Related]
16. Understanding the linkages between spatio-temporal urban land system changes and land surface temperature in Srinagar City, India, using image archives from Google Earth Engine. Murtaza KO; Shafai S; Shahid P; Romshoo SA Environ Sci Pollut Res Int; 2023 Oct; 30(49):107281-107295. PubMed ID: 37495805 [TBL] [Abstract][Full Text] [Related]
17. Geospatial modeling to assess the past and future land use-land cover changes in the Brahmaputra Valley, NE India, for sustainable land resource management. Debnath J; Sahariah D; Lahon D; Nath N; Chand K; Meraj G; Farooq M; Kumar P; Kanga S; Singh SK Environ Sci Pollut Res Int; 2023 Oct; 30(49):106997-107020. PubMed ID: 36418825 [TBL] [Abstract][Full Text] [Related]
18. Monitoring land use land cover changes in the Eastern Himalayan landscape of Nagaland, Northeast India. Ritse V; Basumatary H; Kulnu AS; Dutta G; Phukan MM; Hazarika N Environ Monit Assess; 2020 Oct; 192(11):711. PubMed ID: 33070264 [TBL] [Abstract][Full Text] [Related]
19. Decadal Trend in Agricultural Abandonment and Woodland Expansion in an Agro-Pastoral Transition Band in Northern China. Wang C; Gao Q; Wang X; Yu M PLoS One; 2015; 10(11):e0142113. PubMed ID: 26562303 [TBL] [Abstract][Full Text] [Related]
20. Use of support vector machine and cellular automata methods to evaluate impact of irrigation project on LULC. Halder S; Das S; Basu S Environ Monit Assess; 2022 Oct; 195(1):3. PubMed ID: 36264438 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]