These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
172 related articles for article (PubMed ID: 3805001)
21. Redox cycling of resorufin catalyzed by rat liver microsomal NADPH-cytochrome P450 reductase. Dutton DR; Reed GA; Parkinson A Arch Biochem Biophys; 1989 Feb; 268(2):605-16. PubMed ID: 2464338 [TBL] [Abstract][Full Text] [Related]
22. Decreased catalase activity is the underlying mechanism of oxidant susceptibility in glucose-6-phosphate dehydrogenase-deficient erythrocytes. Scott MD; Wagner TC; Chiu DT Biochim Biophys Acta; 1993 Apr; 1181(2):163-8. PubMed ID: 8481405 [TBL] [Abstract][Full Text] [Related]
23. Superoxide dismutase and catalase enhance autoxidation during one-electron reduction of aminochrome by NADPH-cytochrome P-450 reductase. Baez S; Linderson Y; Segura-Aguilar J Biochem Mol Med; 1995 Feb; 54(1):12-8. PubMed ID: 7551811 [TBL] [Abstract][Full Text] [Related]
24. Properties of glutathione release observed during reduction of organic hydroperoxide, demethylation of aminopyrine and oxidation of some substances in perfused rat liver, and their implications for the physiological function of catalase. Oshino N; Chance B Biochem J; 1977 Mar; 162(3):509-25. PubMed ID: 17386 [TBL] [Abstract][Full Text] [Related]
25. GLUTATHIONE PEROXIDASE IN LENS AND A SOURCE OF HYDROGEN PEROXIDE IN AQUEOUS HUMOUR. PIRIE A Biochem J; 1965 Jul; 96(1):244-53. PubMed ID: 14343138 [TBL] [Abstract][Full Text] [Related]
26. Analyzing the Function of Catalase and the Ascorbate-Glutathione Pathway in H Tuzet A; Rahantaniaina MS; Noctor G Antioxid Redox Signal; 2019 Mar; 30(9):1238-1268. PubMed ID: 30044135 [TBL] [Abstract][Full Text] [Related]
28. Primary sequence and activity analyses of a catalase from Ascaris suum. Eckelt VH; Liebau E; Walter RD; Henkle-Dührsen K Mol Biochem Parasitol; 1998 Sep; 95(2):203-14. PubMed ID: 9803413 [TBL] [Abstract][Full Text] [Related]
29. Determination of serum catalase activity on a centrifugal analyzer by an NADP/NADPH coupled enzyme reaction system. Yasmineh WG; Chung MY; Caspers JI Clin Biochem; 1992 Feb; 25(1):21-7. PubMed ID: 1551237 [TBL] [Abstract][Full Text] [Related]
30. Formation of a tyrosyl radical intermediate in Proteus mirabilis catalase by directed mutagenesis and consequences for nucleotide reactivity. Andreoletti P; Gambarelli S; Sainz G; Stojanoff V; White C; Desfonds G; Gagnon J; Gaillard J; Jouve HM Biochemistry; 2001 Nov; 40(45):13734-43. PubMed ID: 11695923 [TBL] [Abstract][Full Text] [Related]
31. Contributions of catalase and glutathione peroxidase to red cell peroxide removal. Nicholis P Biochim Biophys Acta; 1972 Sep; 279(2):306-9. PubMed ID: 5082500 [No Abstract] [Full Text] [Related]
32. Crystal structure of Proteus mirabilis PR catalase with and without bound NADPH. Gouet P; Jouve HM; Dideberg O J Mol Biol; 1995 Jun; 249(5):933-54. PubMed ID: 7791219 [TBL] [Abstract][Full Text] [Related]
33. The NADPH binding site on beef liver catalase. Fita I; Rossmann MG Proc Natl Acad Sci U S A; 1985 Mar; 82(6):1604-8. PubMed ID: 3856839 [TBL] [Abstract][Full Text] [Related]
34. Mechanism of acetaminophen-stimulated NADPH oxidation catalyzed by the peroxidase-H2O2 system. Keller RJ; Hinson JA Drug Metab Dispos; 1991; 19(1):184-7. PubMed ID: 1673396 [TBL] [Abstract][Full Text] [Related]
35. Hydrogen peroxide metabolism and sensing in human erythrocytes: a validated kinetic model and reappraisal of the role of peroxiredoxin II. Benfeitas R; Selvaggio G; Antunes F; Coelho PM; Salvador A Free Radic Biol Med; 2014 Sep; 74():35-49. PubMed ID: 24952139 [TBL] [Abstract][Full Text] [Related]
36. Direct evidence for catalase as the predominant H2O2 -removing enzyme in human erythrocytes. Mueller S; Riedel HD; Stremmel W Blood; 1997 Dec; 90(12):4973-8. PubMed ID: 9389716 [TBL] [Abstract][Full Text] [Related]
37. Characterization of NADPH-dependent methemoglobin reductase as a heme-binding protein present in erythrocytes and liver. Xu F; Quandt KS; Hultquist DE Proc Natl Acad Sci U S A; 1992 Mar; 89(6):2130-4. PubMed ID: 1549573 [TBL] [Abstract][Full Text] [Related]
38. A study of the sensitivity of Leishmania donovani promastigotes and amastigotes to hydrogen peroxide. II. Possible mechanisms involved in protective H2O2 scavenging. Channon JY; Blackwell JM Parasitology; 1985 Oct; 91 ( Pt 2)():207-17. PubMed ID: 4069752 [TBL] [Abstract][Full Text] [Related]
39. Functional interactions in cytochrome P450BM3: flavin semiquinone intermediates, role of NADP(H), and mechanism of electron transfer by the flavoprotein domain. Murataliev MB; Klein M; Fulco A; Feyereisen R Biochemistry; 1997 Jul; 36(27):8401-12. PubMed ID: 9204888 [TBL] [Abstract][Full Text] [Related]
40. Oxidation of guaiacol by myeloperoxidase: a two-electron-oxidized guaiacol transient species as a mediator of NADPH oxidation. Capeillère-Blandin C Biochem J; 1998 Dec; 336 ( Pt 2)(Pt 2):395-404. PubMed ID: 9820817 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]