These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

120 related articles for article (PubMed ID: 3805005)

  • 1. Interaction of rat testis protein, TP, with nucleic acids in vitro. Fluorescence quenching, UV absorption, and thermal denaturation studies.
    Singh J; Rao MR
    J Biol Chem; 1987 Jan; 262(2):734-40. PubMed ID: 3805005
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Interaction of nucleosome core DNA with transition proteins 1 and 3 from boar late spermatid nuclei.
    Akama K; Sato H; Furihata-Yamauchi M; Komatsu Y; Tobita T; Nakano M
    J Biochem; 1996 Mar; 119(3):448-55. PubMed ID: 8830038
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Interaction of spermatid-specific protein TP2 with nucleic acids, in vitro. A comparative study with TP1.
    Baskaran R; Rao MR
    J Biol Chem; 1990 Dec; 265(34):21039-47. PubMed ID: 2250010
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The amino acid sequence and interaction with the nucleosome core DNA of transition protein 4 from boar late spermatid nuclei.
    Akama K; Ichimura H; Sato H; Kojima S; Miura K; Hayashi H; Komatsu Y; Nakano M
    Eur J Biochem; 1995 Oct; 233(1):179-85. PubMed ID: 7588743
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Interaction of rat testis protein, TP, with nucleosome core particle.
    Singh J; Rao MR
    Biochem Int; 1988 Oct; 17(4):701-10. PubMed ID: 3240317
    [TBL] [Abstract][Full Text] [Related]  

  • 6. DNA "melting" proteins. I. Effects of bovine pancreatic ribonuclease binding on the conformation and stability of DNA.
    Jensen DE; von Hippel PH
    J Biol Chem; 1976 Nov; 251(22):7198-214. PubMed ID: 993211
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The role of tyrosine in the association of proteins and nucleic acids. Specific recognition of single-stranded nucleic acids by tyrosine-containing peptides.
    Mayer R; Toulme F; Montenay-Garestier T; Helene C
    J Biol Chem; 1979 Jan; 254(1):75-82. PubMed ID: 758326
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Modulation of nucleic acid structure by ligand binding: induction of a DNA.RNA.DNA hybrid triplex by DAPI intercalation.
    Xu Z; Pilch DS; Srinivasan AR; Olson WK; Geacintov NE; Breslauer KJ
    Bioorg Med Chem; 1997 Jun; 5(6):1137-47. PubMed ID: 9222508
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Counterion association with native and denatured nucleic acids: an experimental approach.
    Völker J; Klump HH; Manning GS; Breslauer KJ
    J Mol Biol; 2001 Jul; 310(5):1011-25. PubMed ID: 11501992
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Studies on interaction between poly(L-lysine58, L-phenylalanine42) and deoxyribonucleic acids.
    Santella RM; Li HJ
    Biochemistry; 1975 Aug; 14(16):3604-11. PubMed ID: 1172443
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Mammalian heterogeneous ribonucleoprotein A1 and its constituent domains. Nucleic acid interaction, structural stability and self-association.
    Casas-Finet JR; Smith JD; Kumar A; Kim JG; Wilson SH; Karpel RL
    J Mol Biol; 1993 Feb; 229(4):873-89. PubMed ID: 8445653
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Interactions of the A1 heterogeneous nuclear ribonucleoprotein and its proteolytic derivative, UP1, with RNA and DNA: evidence for multiple RNA binding domains and salt-dependent binding mode transitions.
    Nadler SG; Merrill BM; Roberts WJ; Keating KM; Lisbin MJ; Barnett SF; Wilson SH; Williams KR
    Biochemistry; 1991 Mar; 30(11):2968-76. PubMed ID: 1848781
    [TBL] [Abstract][Full Text] [Related]  

  • 13. In vitro studies on the behavior of salmeterol xinafoate and its interaction with calf thymus DNA by multi-spectroscopic techniques.
    Zhao T; Bi S; Wang Y; Wang T; Pang B; Gu T
    Spectrochim Acta A Mol Biomol Spectrosc; 2014 Nov; 132():198-204. PubMed ID: 24866086
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Binding characteristics of salbutamol with DNA by spectral methods.
    Bi S; Pang B; Zhao T; Wang T; Wang Y; Yan L
    Spectrochim Acta A Mol Biomol Spectrosc; 2013 Jul; 111():182-7. PubMed ID: 23639734
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Interaction of a tryptophan-containing peptide with chromatin core particles. A fluorescence study.
    Colot V; Toulme JJ; Helene C
    FEBS Lett; 1984 Apr; 169(2):205-10. PubMed ID: 6714425
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Berberine, a strong polyriboadenylic acid binding plant alkaloid: spectroscopic, viscometric, and thermodynamic study.
    Yadav RC; Kumar GS; Bhadra K; Giri P; Sinha R; Pal S; Maiti M
    Bioorg Med Chem; 2005 Jan; 13(1):165-74. PubMed ID: 15582461
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Spectroscopic characterization of the interaction of phenosafranin and safranin O with double stranded, heat denatured and single stranded calf thymus DNA.
    Saha I; Kumar GS
    J Fluoresc; 2011 Jan; 21(1):247-55. PubMed ID: 20878351
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Interaction of the HB protein of Bacillus globigii with nucleic acids. Analysis of the binding to DNA and polynucleotides.
    Watanabe F; Stankowski S; Schwarz G
    Eur J Biochem; 1984 Apr; 140(1):215-9. PubMed ID: 6538483
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Interaction of steroids with nucleic acids.
    Arya SK; Tang JT
    Biochemistry; 1975 Mar; 14(5):963-9. PubMed ID: 1092329
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Studies of the binding mode of TXNHCH2COOH with calf thymus DNA by spectroscopic methods.
    Ataci N; Arsu N
    Spectrochim Acta A Mol Biomol Spectrosc; 2016 Dec; 169():128-33. PubMed ID: 27367618
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.