These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

536 related articles for article (PubMed ID: 3805008)

  • 1. Deamidation, isomerization, and racemization at asparaginyl and aspartyl residues in peptides. Succinimide-linked reactions that contribute to protein degradation.
    Geiger T; Clarke S
    J Biol Chem; 1987 Jan; 262(2):785-94. PubMed ID: 3805008
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Succinimide formation from aspartyl and asparaginyl peptides as a model for the spontaneous degradation of proteins.
    Stephenson RC; Clarke S
    J Biol Chem; 1989 Apr; 264(11):6164-70. PubMed ID: 2703484
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Propensity for spontaneous succinimide formation from aspartyl and asparaginyl residues in cellular proteins.
    Clarke S
    Int J Pept Protein Res; 1987 Dec; 30(6):808-21. PubMed ID: 3440704
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Deuteration protects asparagine residues against racemization.
    Lowenson JD; Shmanai VV; Shklyaruck D; Clarke SG; Shchepinov MS
    Amino Acids; 2016 Sep; 48(9):2189-96. PubMed ID: 27169868
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effect of adjacent histidine and cysteine residues on the spontaneous degradation of asparaginyl- and aspartyl-containing peptides.
    Brennan TV; Clarke S
    Int J Pept Protein Res; 1995 Jun; 45(6):547-53. PubMed ID: 7558585
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Spontaneous peptide bond cleavage in aging alpha-crystallin through a succinimide intermediate.
    Voorter CE; de Haard-Hoekman WA; van den Oetelaar PJ; Bloemendal H; de Jong WW
    J Biol Chem; 1988 Dec; 263(35):19020-3. PubMed ID: 3198609
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The role of the cyclic imide in alternate degradation pathways for asparagine-containing peptides and proteins.
    Dehart MP; Anderson BD
    J Pharm Sci; 2007 Oct; 96(10):2667-85. PubMed ID: 17518358
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Racemization of an asparagine residue during peptide deamidation.
    Li B; Borchardt RT; Topp EM; VanderVelde D; Schowen RL
    J Am Chem Soc; 2003 Sep; 125(38):11486-7. PubMed ID: 13129337
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Kinetics and mechanisms of deamidation and covalent amide-linked adduct formation in amorphous lyophiles of a model asparagine-containing Peptide.
    Dehart MP; Anderson BD
    Pharm Res; 2012 Oct; 29(10):2722-37. PubMed ID: 22006203
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A mechanism-based kinetic analysis of succinimide-mediated deamidation, racemization, and covalent adduct formation in a model peptide in amorphous lyophiles.
    Dehart MP; Anderson BD
    J Pharm Sci; 2012 Sep; 101(9):3096-109. PubMed ID: 22271437
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Rapid degradation of D- and L-succinimide-containing peptides by a post-proline endopeptidase from human erythrocytes.
    Momand J; Clarke S
    Biochemistry; 1987 Dec; 26(24):7798-805. PubMed ID: 3480758
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Metabolism of a synthetic L-isoaspartyl-containing hexapeptide in erythrocyte extracts. Enzymatic methyl esterification is followed by nonenzymatic succinimide formation.
    Murray ED; Clarke S
    J Biol Chem; 1986 Jan; 261(1):306-12. PubMed ID: 3941079
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Conversion of isoaspartyl peptides to normal peptides: implications for the cellular repair of damaged proteins.
    McFadden PN; Clarke S
    Proc Natl Acad Sci U S A; 1987 May; 84(9):2595-9. PubMed ID: 3472227
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Evidence for a novel racemization process of an asparaginyl residue in mouse lysozyme under physiological conditions.
    Ueno K; Ueda T; Sakai K; Abe Y; Hamasaki N; Okamoto M; Imoto T
    Cell Mol Life Sci; 2005 Jan; 62(2):199-205. PubMed ID: 15666091
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Chemical pathways of peptide degradation. III. Effect of primary sequence on the pathways of deamidation of asparaginyl residues in hexapeptides.
    Patel K; Borchardt RT
    Pharm Res; 1990 Aug; 7(8):787-93. PubMed ID: 2235875
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Chemical pathways of peptide degradation. II. Kinetics of deamidation of an asparaginyl residue in a model hexapeptide.
    Patel K; Borchardt RT
    Pharm Res; 1990 Jul; 7(7):703-11. PubMed ID: 2395797
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Deamidation via cyclic imide in asparaginyl peptides.
    Capasso S; Mazzarella L; Sica F; Zagari A
    Pept Res; 1989; 2(2):195-200. PubMed ID: 2520758
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Site-specific rapid deamidation and isomerization in human lens αA-crystallin in vitro.
    Takata T; Ha S; Koide T; Fujii N
    Protein Sci; 2020 Apr; 29(4):955-965. PubMed ID: 31930615
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Neighboring side chain effects on asparaginyl and aspartyl degradation: an ab initio study of the relationship between peptide conformation and backbone NH acidity.
    Radkiewicz JL; Zipse H; Clarke S; Houk KN
    J Am Chem Soc; 2001 Apr; 123(15):3499-506. PubMed ID: 11472122
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Deamidation: Differentiation of aspartyl from isoaspartyl products in peptides by electron capture dissociation.
    Cournoyer JJ; Pittman JL; Ivleva VB; Fallows E; Waskell L; Costello CE; O'Connor PB
    Protein Sci; 2005 Feb; 14(2):452-63. PubMed ID: 15659375
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 27.