BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

188 related articles for article (PubMed ID: 38050081)

  • 1. Activity-Dependent Stabilization of Nascent Dendritic Spines Requires Nonenzymatic CaMKIIα Function.
    Claiborne N; Anisimova M; Zito K
    J Neurosci; 2024 Jan; 44(2):. PubMed ID: 38050081
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Kinase-dead knock-in mouse reveals an essential role of kinase activity of Ca2+/calmodulin-dependent protein kinase IIalpha in dendritic spine enlargement, long-term potentiation, and learning.
    Yamagata Y; Kobayashi S; Umeda T; Inoue A; Sakagami H; Fukaya M; Watanabe M; Hatanaka N; Totsuka M; Yagi T; Obata K; Imoto K; Yanagawa Y; Manabe T; Okabe S
    J Neurosci; 2009 Jun; 29(23):7607-18. PubMed ID: 19515929
    [TBL] [Abstract][Full Text] [Related]  

  • 3. LTP-induced long-term stabilization of individual nascent dendritic spines.
    Hill TC; Zito K
    J Neurosci; 2013 Jan; 33(2):678-86. PubMed ID: 23303946
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Synaptic strength of individual spines correlates with bound Ca2+-calmodulin-dependent kinase II.
    Asrican B; Lisman J; Otmakhov N
    J Neurosci; 2007 Dec; 27(51):14007-11. PubMed ID: 18094239
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Persistent accumulation of calcium/calmodulin-dependent protein kinase II in dendritic spines after induction of NMDA receptor-dependent chemical long-term potentiation.
    Otmakhov N; Tao-Cheng JH; Carpenter S; Asrican B; Dosemeci A; Reese TS; Lisman J
    J Neurosci; 2004 Oct; 24(42):9324-31. PubMed ID: 15496668
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Non-Ionotropic NMDA Receptor Signaling Drives Activity-Induced Dendritic Spine Shrinkage.
    Stein IS; Gray JA; Zito K
    J Neurosci; 2015 Sep; 35(35):12303-8. PubMed ID: 26338340
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Mechanisms of Ca
    Chang JY; Nakahata Y; Hayano Y; Yasuda R
    Nat Commun; 2019 Jun; 10(1):2784. PubMed ID: 31239443
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Postsynaptic protein mobility in dendritic spines: long-term regulation by synaptic NMDA receptor activation.
    Sharma K; Fong DK; Craig AM
    Mol Cell Neurosci; 2006 Apr; 31(4):702-12. PubMed ID: 16504537
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Differential stimulus-dependent synaptic recruitment of CaMKIIα by intracellular determinants of GluN2B.
    She K; Rose JK; Craig AM
    Mol Cell Neurosci; 2012 Nov; 51(3-4):68-78. PubMed ID: 22902837
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Molecular basis of interactions between CaMKII and α-actinin-2 that underlie dendritic spine enlargement.
    Curtis AJ; Zhu J; Penny CJ; Gold MG
    Elife; 2023 Jul; 12():. PubMed ID: 37489746
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Autophosphorylated CaMKIIalpha acts as a scaffold to recruit proteasomes to dendritic spines.
    Bingol B; Wang CF; Arnott D; Cheng D; Peng J; Sheng M
    Cell; 2010 Feb; 140(4):567-78. PubMed ID: 20178748
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Biomolecular condensate assembly of nArgBP2 tunes its functionality to manifest the structural plasticity of dendritic spines.
    Cho E; Lee SE; Lee U; Goh Y; Jeong S; Choi J; Jeong WK; Chang S
    Exp Mol Med; 2023 Jan; 55(1):108-119. PubMed ID: 36599935
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Autocrine BDNF-TrkB signalling within a single dendritic spine.
    Harward SC; Hedrick NG; Hall CE; Parra-Bueno P; Milner TA; Pan E; Laviv T; Hempstead BL; Yasuda R; McNamara JO
    Nature; 2016 Oct; 538(7623):99-103. PubMed ID: 27680698
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Developmental stage-dependent regulation of spine formation by calcium-calmodulin-dependent protein kinase IIα and Rap1.
    Cornelia Koeberle S; Tanaka S; Kuriu T; Iwasaki H; Koeberle A; Schulz A; Helbing DL; Yamagata Y; Morrison H; Okabe S
    Sci Rep; 2017 Oct; 7(1):13409. PubMed ID: 29042611
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Activity-dependent modulation of the interaction between CaMKIIα and Abi1 and its involvement in spine maturation.
    Park E; Chi S; Park D
    J Neurosci; 2012 Sep; 32(38):13177-88. PubMed ID: 22993434
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Spatiotemporal maps of CaMKII in dendritic spines.
    Khan S; Reese TS; Rajpoot N; Shabbir A
    J Comput Neurosci; 2012 Aug; 33(1):123-39. PubMed ID: 22218920
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Activation of CaMKII in single dendritic spines during long-term potentiation.
    Lee SJ; Escobedo-Lozoya Y; Szatmari EM; Yasuda R
    Nature; 2009 Mar; 458(7236):299-304. PubMed ID: 19295602
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Developmental restoration of LTP deficits in heterozygous CaMKIIα KO mice.
    Goodell DJ; Benke TA; Bayer KU
    J Neurophysiol; 2016 Nov; 116(5):2140-2151. PubMed ID: 27535377
    [TBL] [Abstract][Full Text] [Related]  

  • 19. CaMKIIα expression in a mouse model of NMDAR hypofunction schizophrenia: Putative roles for IGF-1R and TLR4.
    Ogundele OM; Lee CC
    Brain Res Bull; 2018 Mar; 137():53-70. PubMed ID: 29137928
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Chronic neuronal excitation leads to dual metaplasticity in the signaling for structural long-term potentiation.
    Ueda HH; Nagasawa Y; Sato A; Onda M; Murakoshi H
    Cell Rep; 2022 Jan; 38(1):110153. PubMed ID: 34986356
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.