BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

154 related articles for article (PubMed ID: 38050562)

  • 1. Establishment and Analysis of an Artificial Neural Network Model for Early Detection of Polycystic Ovary Syndrome Using Machine Learning Techniques.
    Wu Y; Xiao Q; Wang S; Xu H; Fang Y
    J Inflamm Res; 2023; 16():5667-5676. PubMed ID: 38050562
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Development of a joint diagnostic model of thyroid papillary carcinoma with artificial neural network and random forest.
    Wang S; Liu W; Ye Z; Xia X; Guo M
    Front Genet; 2022; 13():957718. PubMed ID: 36276977
    [No Abstract]   [Full Text] [Related]  

  • 3. Establishment and Analysis of a Combined Diagnostic Model of Polycystic Ovary Syndrome with Random Forest and Artificial Neural Network.
    Xie NN; Wang FF; Zhou J; Liu C; Qu F
    Biomed Res Int; 2020; 2020():2613091. PubMed ID: 32884937
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Screening of potential biomarkers for polycystic ovary syndrome and identification of expression and immune characteristics.
    Liu S; Zhao X; Meng Q; Li B
    PLoS One; 2023; 18(10):e0293447. PubMed ID: 37883387
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Establishment of a Combined Diagnostic Model of Abdominal Aortic Aneurysm with Random Forest and Artificial Neural Network.
    Duan Y; Xie E; Liu C; Sun J; Deng J
    Biomed Res Int; 2022; 2022():7173972. PubMed ID: 35299890
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A machine learning model for predicting patients with major depressive disorder: A study based on transcriptomic data.
    Liu S; Lu T; Zhao Q; Fu B; Wang H; Li G; Yang F; Huang J; Lyu N
    Front Neurosci; 2022; 16():949609. PubMed ID: 36003956
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Polycystic ovary syndrome: Identification of novel and hub biomarkers in the autophagy-associated mRNA-miRNA-lncRNA network.
    Huang J; Huang B; Kong Y; Yang Y; Tian C; Chen L; Liao Y; Ma L
    Front Endocrinol (Lausanne); 2022; 13():1032064. PubMed ID: 36523600
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Development and Verification of a Combined Diagnostic Model for Sarcopenia with Random Forest and Artificial Neural Network.
    Lin S; Chen C; Cai X; Yang F; Fan Y
    Comput Math Methods Med; 2022; 2022():2957731. PubMed ID: 36050999
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Development of gene model combined with machine learning technology to predict for advanced atherosclerotic plaques.
    Wang L; Bao Y; Yu F; Zhu W; Wang JL; Yang J; Xie H; Huang D
    Clin Neurol Neurosurg; 2023 Aug; 231():107819. PubMed ID: 37315377
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Identification of novel candidate biomarkers and immune infiltration in polycystic ovary syndrome.
    Na Z; Guo W; Song J; Feng D; Fang Y; Li D
    J Ovarian Res; 2022 Jul; 15(1):80. PubMed ID: 35794640
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Identification of Feature Genes of a Novel Neural Network Model for Bladder Cancer.
    Zhang Y; Hua S; Jiang Q; Xie Z; Wu L; Wang X; Shi F; Dong S; Jiang J
    Front Genet; 2022; 13():912171. PubMed ID: 35719407
    [No Abstract]   [Full Text] [Related]  

  • 12. Construction and analysis of a joint diagnostic model of machine learning for cryptorchidism based on single-cell sequencing.
    Chen Y; Zhou X; Ji L; Zhao J; Xian H; Xu Y; Wang Z; Ge W
    Birth Defects Res; 2024 Mar; 116(3):e2316. PubMed ID: 38459615
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Construction of a competing endogenous RNA network to identify drug targets against polycystic ovary syndrome.
    Wu T; Gao YY; Tang XN; Li Y; Dai J; Zhou S; Wu M; Zhang JJ; Wang SX
    Hum Reprod; 2022 Nov; 37(12):2856-2866. PubMed ID: 36223608
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Construction of a ceRNA network in polycystic ovary syndrome (PCOS) driven by exosomal lncRNA.
    Bai L; Gong J; Guo Y; Li Y; Huang H; Liu X
    Front Genet; 2022; 13():979924. PubMed ID: 36406137
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A novel model based on necroptosis to assess progression for polycystic ovary syndrome and identification of potential therapeutic drugs.
    Wang M; An K; Huang J; Mprah R; Ding H
    Front Endocrinol (Lausanne); 2023; 14():1193992. PubMed ID: 37745699
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Shared diagnostic genes and potential mechanism between PCOS and recurrent implantation failure revealed by integrated transcriptomic analysis and machine learning.
    Chen W; Yang Q; Hu L; Wang M; Yang Z; Zeng X; Sun Y
    Front Immunol; 2023; 14():1175384. PubMed ID: 37261354
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Discovery of immune-related diagnostic biomarkers and construction of diagnostic model in varies polycystic ovary syndrome.
    Qu J; Li B; Qiu M; Wang J; Chen Z; Li K; Teng X
    Arch Gynecol Obstet; 2022 Nov; 306(5):1607-1615. PubMed ID: 35904610
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A Methylation Diagnostic Model Based on Random Forests and Neural Networks for Asthma Identification.
    Li DD; Chen T; Ling YL; Jiang Y; Li QG
    Comput Math Methods Med; 2022; 2022():2679050. PubMed ID: 36213574
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Identification of Three Potential circRNA Biomarkers of Polycystic Ovary Syndrome by Bioinformatics Analysis and Validation.
    Huang P; Du S; Lin Y; Huang Z; Li H; Chen G; Chen S; Chen Q; Da L; Shi H; Wei W; Yang L; Sun Y; Zheng B
    Int J Gen Med; 2021; 14():5959-5968. PubMed ID: 34588800
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Identification of key pathways and genes in polycystic ovary syndrome via integrated bioinformatics analysis and prediction of small therapeutic molecules.
    Devarbhavi P; Telang L; Vastrad B; Tengli A; Vastrad C; Kotturshetti I
    Reprod Biol Endocrinol; 2021 Feb; 19(1):31. PubMed ID: 33622336
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.